Convex Optimization Algorithms and Recovery Theories for Sparse Models in Machine Learning

[1]  Wotao Yin,et al.  Augmented 퓁1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm , 2012, SIAM J. Imaging Sci..

[2]  Hisashi Kashima,et al.  Statistical Performance of Convex Tensor Decomposition , 2011, NIPS.

[3]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[4]  M. Lai,et al.  Augmented l1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm. Revision 1 , 2012 .

[5]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[6]  M. Hestenes Multiplier and gradient methods , 1969 .

[7]  Yonina C. Eldar,et al.  Uniqueness conditions for low-rank matrix recovery , 2011, Optical Engineering + Applications.

[8]  Alfred O. Hero,et al.  Multimodal factor analysis , 2015, 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP).

[9]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[10]  Shiqian Ma,et al.  Accelerated Linearized Bregman Method , 2011, J. Sci. Comput..

[11]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[12]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[13]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[14]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[15]  Donald Goldfarb,et al.  Robust Low-Rank Tensor Recovery: Models and Algorithms , 2013, SIAM J. Matrix Anal. Appl..

[16]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[17]  Johan A. K. Suykens,et al.  Learning with tensors: a framework based on convex optimization and spectral regularization , 2014, Machine Learning.

[18]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[19]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[20]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[21]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[22]  Yong-Jin Liu,et al.  An implementable proximal point algorithmic framework for nuclear norm minimization , 2012, Math. Program..

[23]  Jon W. Tolle,et al.  A class of methods for solving large, convex quadratic programs subject to box constraints , 1991, Math. Program..

[24]  Baoxin Li,et al.  Tensor completion for on-board compression of hyperspectral images , 2010, 2010 IEEE International Conference on Image Processing.

[25]  Yin Li,et al.  Optimum Subspace Learning and Error Correction for Tensors , 2010, ECCV.

[26]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[27]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[28]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[29]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[30]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[31]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[32]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[34]  Xianjun Shi,et al.  A Fixed Point Iterative Method for Low $n$-Rank Tensor Pursuit , 2013, IEEE Transactions on Signal Processing.

[35]  Steffen Staab,et al.  TripleRank: Ranking Semantic Web Data by Tensor Decomposition , 2009, SEMWEB.

[36]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[37]  Shuchin Aeron,et al.  5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN) , 2013, SEG Technical Program Expanded Abstracts 2013.

[38]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[39]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[40]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[41]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[42]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[43]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[44]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[45]  Johan A. K. Suykens,et al.  Tensor Versus Matrix Completion: A Comparison With Application to Spectral Data , 2011, IEEE Signal Processing Letters.

[46]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[47]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[48]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[49]  J. Suykens,et al.  Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .

[50]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[51]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[52]  Eric L. Miller,et al.  Tensor-Based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography , 2013, IEEE Transactions on Image Processing.

[53]  Shiqian Ma,et al.  Tensor principal component analysis via convex optimization , 2012, Math. Program..

[54]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[55]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[56]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[57]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[58]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[59]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[60]  Bo Huang,et al.  Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.

[61]  Nadia Kreimer,et al.  Nuclear norm minimization and tensor completion in exploration seismology , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[62]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[63]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[64]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[65]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[66]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[67]  Joel A. Tropp,et al.  Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.

[68]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[69]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[70]  Katya Scheinberg,et al.  Fast First-Order Methods for Composite Convex Optimization with Backtracking , 2014, Found. Comput. Math..

[71]  F. Ana,et al.  A new method for large-scale box constrained convex quadratic minimization problems , 1995 .

[72]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[73]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[74]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[75]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[76]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[77]  Qun Wan,et al.  Strongly Convex Programming for Principal Component Pursuit , 2012, ArXiv.

[78]  Nima Mesgarani,et al.  Discrimination of speech from nonspeech based on multiscale spectro-temporal Modulations , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[79]  Shiqian Ma,et al.  Fast Multiple-Splitting Algorithms for Convex Optimization , 2009, SIAM J. Optim..