RAL-TR-2010-019 A preconditioned block conjugate gradient algorithm for computing extreme eigenpairs of symmetric and Hermitian problems

This report describes an algorithm for the efficient computation of several extreme eigenvalues and corresponding eigenvectors of a large-scale standard or generalized real symmetric or complex Hermitian eigenvalue problem. The main features are: (i) a new conjugate gradient scheme specifically designed for eigenvalue computation; (ii) the use of the preconditioning as a cheaper alternative to matrix factorization for large discretized differential problems; (iii) simultaneous computation of several eigenpairs by subspace iteration; and (iv) the use of efficient stopping criteria based on error estimation rather than the residual tolerance.

[1]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[2]  Merico E. Argentati,et al.  Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc , 2007, SIAM J. Sci. Comput..

[3]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[4]  J. Brandts The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action , 2003 .

[5]  Evgueni E. Ovtchinnikov,et al.  Computing several eigenpairs of Hermitian problems by conjugate gradient iterations , 2008, J. Comput. Phys..

[6]  U. Hetmaniuk,et al.  A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .

[7]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[8]  Yvan Notay,et al.  JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices , 2007, Comput. Phys. Commun..

[9]  Jennifer A. Scott,et al.  The design of a block rational Lanczos code with partial reorthogonalization and implicit restarting , 2000 .

[10]  M. Arioli,et al.  A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  Evgueni E. Ovtchinnikov,et al.  Jacobi Correction Equation, Line Search, and Conjugate Gradients in Hermitian Eigenvalue Computation I: Computing an Extreme Eigenvalue , 2008, SIAM J. Numer. Anal..

[13]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[14]  E. Ovtchinnikov Cluster robust error estimates for the Rayleigh–Ritz approximation II: Estimates for eigenvalues , 2006 .

[15]  D. Longsine,et al.  Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .

[16]  Evgueni E. Ovtchinnikov,et al.  Lehmann Bounds and Eigenvalue Error Estimation , 2011, SIAM J. Numer. Anal..

[17]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[18]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[19]  Evgueni E. Ovtchinnikov Jacobi Correction Equation, Line Search, and Conjugate Gradients in Hermitian Eigenvalue Computation II: Computing Several Extreme Eigenvalues , 2008, SIAM J. Numer. Anal..

[20]  E. Ovtchinnikov Cluster robust error estimates for the Rayleigh–Ritz approximation I: Estimates for invariant subspaces , 2006 .

[21]  Roy Mathias,et al.  Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .

[22]  E. Ovtchinnikov Cluster robustness of preconditioned gradient subspace iteration eigensolvers , 2006 .

[23]  A. Knyazev Convergence rate estimates for iterative methods for a mesh symmetrie eigenvalue problem , 1987 .

[24]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[25]  Evgueni E. Ovtchinnikov Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems , 2006, SIAM J. Numer. Anal..

[26]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..