Comparison of approaches to spatial estimation in a bivariate context

The problem of estimating a regionalized variable in the presence of other secondary variables is encountered in spatial investigations. Given a context in which the secondary variable is known everywhere (or can be estimated with great precision), different estimation methods are compared: regression, regression with residual simple kriging, kriging, simple kriging with a mean obtained by regression, kriging with an external drift, and cokriging. The study focuses on 19 pairs of regionalized variables from five different datasets representing different domains (geochemical, environmental, geotechnical). The methods are compared by cross-validation using the mean absolute error as criterion. For correlations between the principal and secondary variable under 0.4, similar results are obtained using kriging and cokriging, and these methods are superior slightly to the other approaches in terms of minimizing estimation error. For correlations greater than 0.4, cokriging generally performs better than other methods, with a reduction in mean absolute errors that can reach 46% when there is a high degree of correlation between the variables. Kriging with an external drift or kriging the residuals of a regression (SKR) are almost as precise as cokriging.

[1]  A. Warrick,et al.  Estimating Soil Water Content Using Cokriging1 , 1987 .

[2]  Improvement of the prediction of soil particle size fractions using spectral properties , 1992 .

[3]  Alain Galli,et al.  Study of a Gas Reservoir Using the External Drift Method , 1987 .

[4]  Denis Marcotte,et al.  Cokriging with matlab , 1991 .

[5]  W. V. Dooremolen,et al.  Cokriging Point Data on Moisture Deficit , 1988 .

[6]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[7]  G. Marsily,et al.  Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity , 1987 .

[8]  E. Grunsky Recognition of alteration in volcanic rocks using statistical analysis of lithogeochemical data , 1986 .

[9]  G. Delrieu,et al.  Estimation de lames d'eau spatiales à l'aide de données de pluviomètres et de radar météorologique-application au pas de temps journalier dans la région de Montréal , 1988 .

[10]  S. Yates,et al.  A comparison of geostatistical methods for estimating virus inactivation rates in ground water , 1987 .

[11]  D. Myers Matrix formulation of co-kriging , 1982 .

[12]  D. R. Nielsen,et al.  The Use of Cokriging with Limited Field Soil Observations 1 , 1983 .

[13]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[14]  David Michel,et al.  Geostatistical Ore Reserve Estimation , 1977 .

[15]  Guy Delrieu,et al.  Une Simplification du Cokrigeage Appliquee a L’etalonnage D’images de Teledetection en Hydrometeorologie , 1989 .

[16]  M. David,et al.  CONDITIONAL BIAS IN KRIGING AND A SUGGESTED CORRECTION , 1984 .

[17]  Jacques Gallichand,et al.  Spatial interpolation of soil salinity and sodicity for a saline soil in Southern Alberta , 1992 .

[18]  A. Maréchal Kriging Seismic Data in Presence of Faults , 1984 .

[19]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[20]  Alan L. Flint,et al.  Multivariate Geostatistïcal Analysis of Ground‐Water Contamination: A Case History , 1993 .

[21]  H. Wackernagel Cokriging versus kriging in regionalized multivariate data analysis , 1994 .

[22]  P. Delfiner,et al.  Application Of Geostatistical Analysis To The Evaluation Of Petroleum Reservoirs With Well Logs , 1983 .