Design of a high-order front tracking method in 2D

[1]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[2]  Lingling Wu,et al.  A simple package for front tracking , 2006, J. Comput. Phys..

[3]  Randall J. LeVeque,et al.  H-Box Methods for the Approximation of Hyperbolic Conservation Laws on Irregular Grids , 2003, SIAM J. Numer. Anal..

[4]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .

[5]  Phillip Colella,et al.  A Second-Order Accurate Conservative Front-Tracking Method in One Dimension , 2010, SIAM J. Sci. Comput..

[6]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .

[7]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[8]  E. Puckett,et al.  A High-Order Godunov Method for Multiple Condensed Phases , 1996 .

[9]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[10]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[12]  P. Colella,et al.  Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry , 2008 .

[13]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[14]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[15]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[16]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[17]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[18]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[19]  Phillip Colella,et al.  Conservative front-tracking for inviscid compressible flow , 1991 .

[20]  Randall J. LeVeque,et al.  Stable boundary conditions for Cartesian grid calculations , 1990 .

[21]  Phillip Colella,et al.  A conservative front tracking method for hyperbolic conservation laws , 1987 .

[22]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[23]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[24]  P. Colella,et al.  A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing , 2002 .

[25]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .