Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA

[1]  K. Ekwall,et al.  Epigenetics: heterochromatin meets RNAi , 2009, Cell Research.

[2]  D. Bartel,et al.  TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway , 2008, Nature structural & molecular biology.

[3]  D. Moazed,et al.  siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription. , 2008, Molecular cell.

[4]  N. Proudfoot,et al.  Cohesin Complex Promotes Transcriptional Termination between Convergent Genes in S. pombe , 2008, Cell.

[5]  Ke Zhang,et al.  Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin , 2008, Nature Structural &Molecular Biology.

[6]  R. Martienssen,et al.  RNA Interference Guides Histone Modification during the S Phase of Chromosomal Replication , 2008, Current Biology.

[7]  M. Zofall,et al.  Cell cycle control of centromeric repeat transcription and heterochromatin assembly , 2008, Nature.

[8]  James C. Carrington,et al.  Specialization and evolution of endogenous small RNA pathways , 2007, Nature Reviews Genetics.

[9]  D. Moazed,et al.  Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. , 2007, Molecular cell.

[10]  Steven P. Gygi,et al.  RNAi-Dependent and -Independent RNA Turnover Mechanisms Contribute to Heterochromatic Gene Silencing , 2007, Cell.

[11]  Titia Sijen,et al.  Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class , 2007, Science.

[12]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[13]  Marc Bühler,et al.  Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing , 2006, Cell.

[14]  Angela N. Brooks,et al.  Structural Basis for Double-Stranded RNA Processing by Dicer , 2006, Science.

[15]  Jernej Ule,et al.  CLIP: a method for identifying protein-RNA interaction sites in living cells. , 2005, Methods.

[16]  C. Bonilla,et al.  RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. , 2005, Genes & development.

[17]  R. Martienssen,et al.  Two Novel Proteins, Dos1 and Dos2, Interact with Rik1 to Regulate Heterochromatic RNA Interference and Histone Modification , 2005, Current Biology.

[18]  T. Sugiyama,et al.  Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome , 2005, Nature Genetics.

[19]  J. Partridge,et al.  RNA Interference (RNAi)-Dependent and RNAi-Independent Association of the Chp1 Chromodomain Protein with Distinct Heterochromatic Loci in Fission Yeast , 2005, Molecular and Cellular Biology.

[20]  T. Sugiyama,et al.  RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Gygi,et al.  Two RNAi Complexes, RITS and RDRC, Physically Interact and Localize to Noncoding Centromeric RNAs , 2004, Cell.

[22]  T. Sugiyama,et al.  RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing , 2004, Nature Genetics.

[23]  N. Rhind,et al.  A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. , 2004, Genes & development.

[24]  J. J. Torres,et al.  Switching between memories in neural automata with synaptic noise , 2004, Neurocomputing.

[25]  Songtao Jia,et al.  RNAi-Mediated Targeting of Heterochromatin by the RITS Complex , 2004, Science.

[26]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[27]  M. Grunstein,et al.  Centromere Silencing and Function in Fission Yeast Is Governed by the Amino Terminus of Histone H3 , 2003, Current Biology.

[28]  K. Ekwall,et al.  Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells , 2003, Journal of Cell Science.

[29]  G. Arndt,et al.  Double-stranded RNA-mediated gene silencing in fission yeast. , 2003, Nucleic acids research.

[30]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[31]  B. Samuelsson,et al.  Dicer is required for chromosome segregation and gene silencing in fission yeast cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[33]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[34]  R. Allshire,et al.  Requirement of Heterochromatin for Cohesion at Centromeres , 2001, Science.

[35]  Andrew J. Bannister,et al.  Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain , 2001, Nature.

[36]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[37]  S. Birken,et al.  Preparation and analysis of the common urinary forms of human chorionic gonadotropin. , 2000, Methods.

[38]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[39]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[40]  R. Allshire,et al.  The chromodomain protein Swi6: a key component at fission yeast centromeres , 1995, Science.

[41]  E. Nimmo,et al.  Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. , 1995, Genes & development.

[42]  M. Baum,et al.  The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. , 1994, Molecular biology of the cell.

[43]  O. Fleck,et al.  Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. , 1994, Gene.

[44]  L. Clarke,et al.  Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci , 1993, Molecular and cellular biology.

[45]  M. Yanagida,et al.  Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast , 1993, The Journal of cell biology.

[46]  O. Niwa,et al.  A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. , 1992, Molecular biology of the cell.

[47]  O. Niwa,et al.  A large number of tRNA genes are symmetrically located in fission yeast centromeres. , 1991, Journal of molecular biology.

[48]  Tomohiro Matsumoto,et al.  Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of Notl restriction sites , 1989, Cell.

[49]  J. White,et al.  A simple method for detection of viral satellite RNAs in small plant tissue samples. , 1989, Journal of virological methods.

[50]  M. Baum,et al.  Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe , 1988, Molecular and cellular biology.

[51]  M. Yanagida,et al.  A novel sequence common to the centromere regions of Schizosaccharomyces pombe chromosomes. , 1987, Nucleic acids research.

[52]  L. Clarke,et al.  Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[53]  O. Niwa,et al.  Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast , 1986, The EMBO journal.

[54]  M. Ouellette,et al.  Involvement of Dcr1 in post-transcriptional regulation of gene expression in Schizosaccharomyces pombe. , 2008, Frontiers in bioscience : a journal and virtual library.

[55]  P. Romby,et al.  Probing RNA structure and RNA-ligand complexes with chemical probes. , 2000, Methods in enzymology.