Certain classes of bi-univalent functions related to Shell-like curves connected with Fibonacci numbers

In 2010, Srivastava et al. [ 38 ] revived the study of coefficient problems for bi-univalent functions. Due to the pioneering work of Srivastava et al. [ 38 ], there has been elicit curiosity to study the coefficient problems for various subclasses of bi-univalent functions. Motivated predominantly by Srivastava et al. [ 38 ], in this work, we consider certain classes of bi-univalent functions related with shell-like curves connected with Fibonacci numbers to obtain the estimates of second and third Taylor-Maclaurin coefficients and Fekete - Szegö inequalities. Further, special cases are also indicated. Some observations of the results presented here are also discussed.

[1]  W. K. Hayman UNIVALENT FUNCTIONS (Grundlehren der mathematischen Wissenschaften, 259) , 1984 .

[2]  H. Srivastava,et al.  Coefficient estimates for a subclass of analytic and bi-univalent functions , 2015 .

[3]  Jacek Dziok,et al.  Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers , 2011, Comput. Math. Appl..

[4]  H. Orhan,et al.  Coefficient bounds for new subclasses of bi-univalent functions , 2012, 1204.4285.

[5]  A. H. El-Qadeem,et al.  Estimation of initial Maclaurin coefficients of certain subclasses of bounded bi-univalent functions , 2019, Journal of the Egyptian Mathematical Society.

[6]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[7]  A. Oladipo,et al.  Coefficients of Bi-Univalent Functions Involving Pseudo-Starlikeness Associated with Chebyshev Polynomials , 2019 .

[8]  A. Y. Lashin Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions , 2019, Ukrainian Mathematical Journal.

[9]  S. A. Halim Coefficients of Bi-Univalent Functions with Positive Real Part Derivatives , 2014 .

[10]  H. Srivastava,et al.  Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions , 2018 .

[11]  Luisa Di Piazza,et al.  Decompositions of Weakly Compact Valued Integrable Multifunctions , 2020, Mathematics.

[12]  T. Bulboacă,et al.  Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative , 2020 .

[13]  Shuhai Li,et al.  Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions , 2013 .

[14]  Hari M. Srivastava,et al.  Certain subclasses of analytic and bi-univalent functions , 2010, Appl. Math. Lett..

[15]  H. Srivastava,et al.  Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials , 2018, Iranian Journal of Science and Technology, Transactions A: Science.

[16]  H. Srivastava,et al.  Certain subclasses of bi-univalent functions associated with the Hohlov operator , 2013 .

[17]  P. Zaprawa On the Fekete-Szegö problem for classes of bi-univalent functions , 2014 .

[18]  S. Jafari,et al.  On Generalized Closed Sets and Generalized Pre-Closed Sets in Neutrosophic Topological Spaces , 2018, Mathematics.

[19]  R. Omar,et al.  Coefficient estimates for certain subclass of bi-univalent functions , 2017 .

[20]  S. Porwal,et al.  New subclasses of bi-univalent functions defined by multiplier transformation , 2020 .

[21]  H. Srivastava,et al.  Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis , 2020 .

[22]  S. Yalçın,et al.  A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers , 2019, Mathematics.

[23]  Elizabeth Marquardt,et al.  Truncated expansion of $\zeta_{p^n}$ in the $p$-adic Mal'cev-Neumann field , 2021, 2111.07127.

[24]  H. Srivastava,et al.  Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator , 2020, Mathematics.

[25]  V. K. Balaji,et al.  Certain classes of bi-univalent functions with bounded boundary variation , 2017 .

[26]  A. Abd-Elrahman Reliability estimation under type-II censored data from the generalized Bilal distribution , 2019, Journal of the Egyptian Mathematical Society.

[27]  H. Srivastava,et al.  Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions , 2015 .

[28]  H. Özlem Güney,et al.  Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers , 2018, Acta Universitatis Sapientiae, Mathematica.

[29]  Evrim Toklu,et al.  On new subclasses of bi-univalent functions defined by generalized Sălăgean differential operator , 2018 .

[30]  V. K. Balaji,et al.  Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions , 2014, 1404.0895.

[31]  E. Deniz CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS SATISFYING SUBORDINATE CONDITIONS , 2013 .

[32]  Nihal Yilmaz Özgür,et al.  On Starlike Functions Connected with $$k$$k-Fibonacci Numbers , 2015 .

[33]  Jacek Dziok,et al.  On α-convex functions related to shell-like functions connected with Fibonacci numbers , 2011, Appl. Math. Comput..

[34]  H. Srivastava,et al.  Initial coefficient estimates for some subclasses of M-Fold symmetric BI-Univalent functions , 2016 .

[36]  Gurmeet Singh,et al.  A Subclass of Bi-Univalent Functions Defined by Generalized Sãlãgean Operator Related to Shell-Like Curves Connected with Fibonacci Numbers , 2019, Int. J. Math. Math. Sci..

[37]  H. Srivastava,et al.  Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type , 2017, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[38]  S. Madian,et al.  Bi-univalent properties for certain class of Bazilevič functions defined by convolution and with bounded boundary rotation , 2019, Journal of the Egyptian Mathematical Society.

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  R. Bharavi Sharma,et al.  Fekete–Szegö inequalities for some subclasses of bi-univalent functions through quasi-subordination , 2019 .

[41]  S. Bulut COEFFICIENT ESTIMATES FOR A CLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS , 2013 .

[42]  See Keong Lee,et al.  Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions , 2012, Appl. Math. Lett..