Mechanically tunable terahertz metamaterials

Electromagnetic device design and flexible electronics fabrication are combined to demonstrate mechanically tunable metamaterials operating at terahertz frequencies. Each metamaterial comprises a planar array of resonators on a highly elastic polydimethylsiloxane substrate. The resonance of the metamaterials is controllable through substrate deformation. Applying a stretching force to the substrate changes the inter-cell capacitance and hence the resonance frequency of the resonators. In the experiment, greater than 8% of the tuning range is achieved with good repeatability over several stretching-relaxing cycles. This study promises applications in remote strain sensing and other controllable metamaterial-based devices.

[1]  Derek Abbott,et al.  Metamaterial-based microfluidic sensor for dielectric characterization , 2013 .

[2]  A. Mitchell,et al.  Elastomer-Based Pneumatic Switch for Radio Frequency Microdevices , 2012, Journal of Microelectromechanical Systems.

[3]  Seung Hoon Lee,et al.  Reversibly Stretchable and Tunable Terahertz Metamaterials with Wrinkled Layouts , 2012, Advanced materials.

[4]  M. Rahmani,et al.  Realization of Variable Three‐Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability , 2012, Advanced materials.

[5]  N. Zheludev,et al.  THz bandwidth optical switching with carbon nanotube metamaterial. , 2012, Optics express.

[6]  Derek Abbott,et al.  Elastomeric silicone substrates for terahertz fishnet metamaterials , 2012 .

[7]  Derek Abbott,et al.  Sub-diffraction thin-film sensing with planar terahertz metamaterials. , 2011, Optics express.

[8]  Tow Chong Chong,et al.  Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates , 2011 .

[9]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[10]  Martin Koch,et al.  Polarization and angle independent terahertz metamaterials with high Q-factors , 2011 .

[11]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[12]  Jan G. Korvink,et al.  Terahertz metamaterials fabricated by inkjet printing , 2009 .

[13]  X. Zhang,et al.  Terahertz metamaterials on free-standing highly-flexible polyimide substrates , 2008, 0808.0454.

[14]  Li Wang,et al.  Modulated terahertz responses of split ring resonators by nanometer thick liquid layers , 2008 .

[15]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[16]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[17]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[18]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[19]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[20]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[21]  I. Bahl Lumped Elements for RF and Microwave Circuits , 2003 .

[22]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[23]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[24]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[25]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[26]  Ingo Wolff,et al.  CAD models of lumped elements on GaAs up to 18 GHz , 1988 .

[27]  T. Sakurai,et al.  Simple formulas for two- and three-dimensional capacitances , 1983, IEEE Transactions on Electron Devices.