What is ab initio in nuclear theory?

Ab initio has been used as a label in nuclear theory for over two decades. Its meaning has evolved and broadened over the years. We present our interpretation, briefly review its historical use, and discuss its present-day relation to theoretical uncertainty quantification.

[1]  J. Vary,et al.  Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO , 2022, 2206.13303.

[2]  Z. Sun,et al.  How to renormalize coupled cluster theory , 2022, Physical Review C.

[3]  Q. Yuan,et al.  Deformed in-medium similarity renormalization group , 2022, Physical Review C.

[4]  T. Duguet,et al.  Multi-reference many-body perturbation theory for nuclei , 2022, The European Physical Journal A.

[5]  J. Henderson,et al.  Systematics of E2 strength in the sd-shell with the valence-space in-medium similarity renormalization group , 2022, 2203.15342.

[6]  T. Papenbrock Effective field theory of pairing rotations , 2022, Physical Review C.

[7]  Isak Svensson,et al.  Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method , 2022, Physical Review C.

[8]  T. Duguet,et al.  Angular-momentum projection in coupled-cluster theory: structure of $^{34}$Mg , 2022, 2201.07298.

[9]  M. Clark,et al.  Toward a resolution of the NN controversy , 2021, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[10]  I. Vernon,et al.  Ab initio predictions link the neutron skin of 208Pb to nuclear forces , 2021, Nature Physics.

[11]  K. Hebeler,et al.  Converged ab initio calculations of heavy nuclei , 2021, Physical Review C.

[12]  Z. Sun,et al.  Effective shell-model interaction for nuclei “southeast” of Sn100 , 2021, Physical Review C.

[13]  D. R. Entem,et al.  Nucleon-nucleon potentials from Δ -full chiral effective-field-theory and implications , 2021, Physical Review C.

[14]  J. G. Li,et al.  Resonances of A=4 T=1 isospin triplet states within the ab initio no-core Gamow shell model , 2021, Physical Review C.

[15]  A. Tropiano,et al.  Short-range correlation physics at low renormalization group resolution , 2021, Physical Review C.

[16]  C. Forss'en,et al.  Normal-ordering approximations and translational (non)invariance , 2021, Physical Review C.

[17]  J. Melendez,et al.  Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables , 2021, Physical Review C.

[18]  J. Piekarewicz,et al.  From noise to information: The transfer function formalism for uncertainty quantification in reconstructing the nuclear density , 2021, Physical Review C.

[19]  H. Witała,et al.  Efficient emulator for solving three-nucleon continuum Faddeev equations with chiral three-nucleon force comprising any number of contact terms , 2021, The European Physical Journal A.

[20]  S. Bacca,et al.  Ab Initio Computation of the Longitudinal Response Function in ^{40}Ca. , 2021, Physical review letters.

[21]  F. Winter,et al.  Axial charge of the triton from lattice QCD , 2021, Physical Review D.

[22]  T. Duguet,et al.  Topical issue on the tower of effective (field) theories and the emergence of nuclear phenomena , 2021, The European Physical Journal A.

[23]  D. Phillips,et al.  Effective field theory approach to rotational bands in odd-mass nuclei , 2020, Physical Review C.

[24]  M. Pratola,et al.  Designing optimal experiments: an application to proton Compton scattering , 2020, The European Physical Journal A.

[25]  P. Vranas,et al.  Towards grounding nuclear physics in QCD , 2019, 1910.07961.

[26]  A. Schwenk,et al.  Ab initio limits of atomic nuclei , 2019, 1905.10475.

[27]  J. Vary,et al.  Light nuclei with semilocal momentum-space regularized chiral interactions up to third order , 2020, Physical Review C.

[28]  C. Forss'en,et al.  Power counting in chiral effective field theory and nuclear binding , 2020, 2011.11584.

[29]  J. Carlson,et al.  Ab Initio Study of (νℓ,ℓ−) and (ν¯ℓ,ℓ+) Inclusive Scattering in C12 : Confronting the MiniBooNE and T2K CCQE Data , 2020 .

[30]  S. Beane,et al.  Low-energy scattering and effective interactions of two baryons at mπ∼450  MeV from lattice quantum chromodynamics , 2020, Physical Review D.

[31]  K. Orginos,et al.  Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes , 2020, 2008.11160.

[32]  H. Hergert A Guided Tour of ab initio Nuclear Many-Body Theory , 2020, Frontiers in Physics.

[33]  L. Coraggio,et al.  Perturbative Approach to Effective Shell-Model Hamiltonians and Operators , 2020, Frontiers in Physics.

[34]  S. Novario,et al.  Charge radii of exotic neon and magnesium isotopes , 2020, 2007.06684.

[35]  R. Furnstahl,et al.  Efficient emulators for scattering using eigenvector continuation , 2020, 2007.03635.

[36]  C. Forss'en,et al.  Accurate bulk properties of nuclei from A=2 to ∞ from potentials with Δ isobars , 2020, 2006.16774.

[37]  N. Shimizu,et al.  Ab initio multishell valence-space Hamiltonians and the island of inversion , 2020, 2004.12969.

[38]  J. Melendez,et al.  How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. , 2020, Physical review letters.

[39]  V. Somà Self-Consistent Green's Function Theory for Atomic Nuclei , 2020, Frontiers in Physics.

[40]  T. Doi,et al.  Lattice QCD and Baryon-Baryon Interactions: HAL QCD Method , 2020, Frontiers in Physics.

[41]  J. Carlson,et al.  Ab initio study of $\boldsymbol{(\nu_\ell,\ell^-)}$ and $\boldsymbol{(\overline{\nu}_\ell,\ell^+)}$ inclusive scattering in $^{12}$C: confronting the MiniBooNE and T2K CCQE data , 2020, 2003.07710.

[42]  U. V. Kolck The Problem of Renormalization of Chiral Nuclear Forces , 2020, Frontiers in Physics.

[43]  Sébastien Rivat,et al.  Philosophical foundations of effective field theories , 2020, The European Physical Journal A.

[44]  A. Idini,et al.  Model nuclear energy density functionals derived from ab initio calculations , 2020, Journal of Physics G: Nuclear and Particle Physics.

[45]  T. Duguet,et al.  Many-Body Perturbation Theories for Finite Nuclei , 2020, Frontiers in Physics.

[46]  J. Lynn,et al.  New ideas in constraining nuclear forces , 2020, 2001.03334.

[47]  B. Bazak,et al.  Extrapolating lattice QCD results using effective field theory , 2019, 1912.07017.

[48]  T. Duguet,et al.  Normal-ordered k-body approximation in particle-number-breaking theories , 2019, The European Physical Journal A.

[49]  T. Duguet,et al.  Novel chiral Hamiltonian and observables in light and medium-mass nuclei , 2019, Physical Review C.

[50]  U. van Kolck,et al.  Nuclear effective field theory: Status and perspectives , 2019, 1906.12122.

[51]  C.-J. Yang Do we know how to count powers in pionless and pionful effective field theory? , 2019, The European Physical Journal A.

[52]  B. Hu,et al.  Ab initio no-core Gamow shell-model calculations of multineutron systems , 2019, Physical Review C.

[53]  G. Hagen,et al.  Global Sensitivity Analysis of Bulk Properties of an Atomic Nucleus. , 2019, Physical review letters.

[54]  Dean Lee,et al.  Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification , 2019, 1909.08446.

[55]  R. Furnstahl Turning the nuclear energy density functional method into a proper effective field theory: reflections , 2019, The European Physical Journal A.

[56]  U. Meißner,et al.  Nuclear Lattice Effective Field Theory , 2019, Lecture Notes in Physics.

[57]  M. T. Pratola,et al.  Quantifying correlated truncation errors in effective field theory , 2019, Physical Review C.

[58]  Dean Lee,et al.  Essential elements for nuclear binding , 2018, Physics Letters B.

[59]  X. Ren,et al.  How (not) to renormalize integral equations with singular potentials in effective field theory , 2018, The European Physical Journal A.

[60]  T. Morris,et al.  Shell-model coupled-cluster method for open-shell nuclei , 2018, Physical Review C.

[61]  M. A. Clark,et al.  A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics , 2018, Nature.

[62]  G. R. Jansen,et al.  Pion-less effective field theory for atomic nuclei and lattice nuclei , 2017, Physical Review C.

[63]  R. Roth,et al.  Structure of the Lightest Tin Isotopes. , 2017, Physical review letters.

[64]  T. Morris,et al.  Δ isobars and nuclear saturation , 2017, 1707.09028.

[65]  T. Inoue,et al.  Doubly magic nuclei from lattice QCD forces at M PS = 469 MeV / c 2 , 2017, 1701.02607.

[66]  Dean Lee,et al.  Volume dependence of N-body bound states , 2017, 1701.00279.

[67]  C. Forss'en,et al.  Large-scale exact diagonalizations reveal low-momentum scales of nuclei , 2017, 1712.09951.

[68]  E. Epelbaum,et al.  Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order , 2017, 1711.08821.

[69]  R. Furnstahl,et al.  Scale dependence of deuteron electrodisintegration , 2017, 1708.03315.

[70]  U. Meißner,et al.  Effective field theory for triaxially deformed nuclei , 2017, 1707.04353.

[71]  S. Bogner,et al.  Ab initio electromagnetic observables with the in-medium similarity renormalization group , 2017, 1705.05511.

[72]  D. Phillips,et al.  Effective field theory description of halo nuclei , 2017, 1702.08605.

[73]  Junli Liu,et al.  Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions , 2016, BMC Systems Biology.

[74]  S. Bogner,et al.  Nucleus-Dependent Valence-Space Approach to Nuclear Structure. , 2016, Physical review letters.

[75]  J. Draayer,et al.  Symmetry-guided large-scale shell-model theory , 2016, 1612.04298.

[76]  M. Viviani,et al.  Local chiral potentials with Δ -intermediate states and the structure of light nuclei , 2016 .

[77]  M. Viviani,et al.  Local chiral potentials and the structure of light nuclei , 2016, 1606.06335.

[78]  G. Hagen,et al.  Structure of ^{78}Ni from First-Principles Computations. , 2016, Physical review letters.

[79]  M. Hjorth-Jensen,et al.  Emergent properties of nuclei from ab initio coupled-cluster calculations , 2016, 1601.08203.

[80]  Sofia Quaglioni,et al.  Unified ab initio approaches to nuclear structure and reactions , 2016, 1601.03765.

[81]  J. Dobaczewski Ab initio derivation of model energy density functionals , 2015, 1507.00697.

[82]  S. Bogner,et al.  The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei , 2015, 1512.06956.

[83]  W. Nazarewicz,et al.  Neutron and weak-charge distributions of the 48Ca nucleus , 2015, Nature Physics.

[84]  T. Papenbrock,et al.  Effective field theory for nuclear vibrations with quantified uncertainties , 2015, 1510.02401.

[85]  W. Nazarewicz,et al.  Charge, neutron, and weak size of the atomic nucleus , 2015, 1509.07169.

[86]  Dean Lee,et al.  Ab initio alpha–alpha scattering , 2015, Nature.

[87]  A. Ekstrom,et al.  Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions , 2015, 1506.02466.

[88]  R. Furnstahl,et al.  Quantifying truncation errors in effective field theory , 2015, 1506.01343.

[89]  W. Nazarewicz,et al.  Accurate nuclear radii and binding energies from a chiral interaction , 2015, 1502.04682.

[90]  R. Schiavilla,et al.  Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.

[91]  E. Epelbaum,et al.  Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.

[92]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[93]  U. van Kolck,et al.  Effective field theory for lattice nuclei. , 2013, Physical review letters.

[94]  Jenný Brynjarsdóttir,et al.  Learning about physical parameters: the importance of model discrepancy , 2014 .

[95]  R. Roth,et al.  Ab Initio Nuclear Structure Theory: From Few to Many , 2014 .

[96]  P. Navrátil,et al.  Ab initio coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. , 2014, Physical review letters.

[97]  S. C. Pieper,et al.  Neutral weak current two-body contributions in inclusive scattering from 12C. , 2014, Physical review letters.

[98]  M. Hjorth-Jensen,et al.  Coupled-cluster computations of atomic nuclei , 2013, Reports on progress in physics. Physical Society.

[99]  R. Roth,et al.  Ab initio path to heavy nuclei , 2013, 1312.5685.

[100]  Dean Lee,et al.  Lattice effective field theory for medium-mass nuclei , 2013, 1311.0477.

[101]  Ümit V. Çatalyürek,et al.  Collective modes in light nuclei from first principles. , 2013, Physical review letters.

[102]  Stefan M. Wild,et al.  Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. , 2013, Physical review letters.

[103]  J. Vary,et al.  Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei , 2013, 1301.0956.

[104]  T. Duguet,et al.  Ab initio Gorkov-Green's function calculations of open-shell nuclei , 2012, 1208.2472.

[105]  S. Beane,et al.  Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry , 2012, 1206.5219.

[106]  Giuseppina Orlandini,et al.  Modern ab initio approaches and applications in few-nucleon physics with A≥4 , 2012, 1204.4617.

[107]  E. Epelbaum,et al.  On the Renormalization of the One–Pion Exchange Potential and the Consistency of Weinberg’s Power Counting , 2006, nucl-th/0609037.

[108]  Saul D. Cohen,et al.  Hyperon-nucleon interactions from quantum chromodynamics and the composition of dense nuclear matter. , 2012, Physical review letters.

[109]  S. Bogner,et al.  High-momentum tails from low-momentum effective theories , 2012, 1208.1734.

[110]  R. J. Furnstahl,et al.  Corrections to Nuclear Energies and Radii in Finite Oscillator Spaces , 2012, 1207.6100.

[111]  P. Navrátil,et al.  Medium-mass nuclei with normal-ordered chiral NN+3N interactions. , 2011, Physical review letters.

[112]  Robert Roth,et al.  Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O. , 2011, Physical review letters.

[113]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[114]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[115]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[116]  K. Hebeler,et al.  Improved nuclear matter calculations from chiral low-momentum interactions , 2010, 1012.3381.

[117]  T. Papenbrock Effective theory for deformed nuclei , 2010, 1011.5026.

[118]  S. Bogner,et al.  In-medium similarity renormalization group for nuclei. , 2010, Physical review letters.

[119]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[120]  G. Hagen,et al.  Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions , 2010, 1005.2627.

[121]  E. Epelbaum,et al.  Lattice calculations for A = 3 , 4, 6, 12 nuclei using chiral effective field theory , 2010, 1003.5697.

[122]  G. Hagen,et al.  Solution of the center-of-mass problem in nuclear structure calculations. , 2009, Physical review letters.

[123]  R. J. Furnstahl,et al.  Evolution of nuclear many-body forces with the similarity renormalization group. , 2009, Physical review letters.

[124]  S. K. Bogner,et al.  Density matrix expansion for low-momentum interactions , 2008, 0811.4198.

[125]  D. Phillips,et al.  Bayesian methods for parameter estimation in effective field theories , 2008, 0808.3643.

[126]  Dean Lee Lattice simulations for few- and many-body systems , 2008, 0804.3501.

[127]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[128]  Petr Navrátil,et al.  Ab initio many-body calculations of n-3H, n-4He, p-3,4He, and n-10Be scattering. , 2008, Physical review letters.

[129]  Andrew G. Taube,et al.  Improving upon CCSD(T): LambdaCCSD(T). I. Potential energy surfaces. , 2008, The Journal of chemical physics.

[130]  P. Piecuch,et al.  Coupled-Cluster Theory for Three-Body Hamiltonians , 2007, 0704.2854.

[131]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[132]  S. C. Pieper,et al.  Quantum Monte Carlo calculations of neutron-alpha scattering. , 2006, Physical review letters.

[133]  R. Furnstahl,et al.  Similarity renormalization group for nucleon-nucleon interactions , 2006, nucl-th/0611045.

[134]  Michael Goldstein,et al.  Trade-off sensitive experimental design: a multicriterion, decision theoretic, Bayes linear approach , 2006 .

[135]  R. Timmermans,et al.  Renormalization of one-pion exchange and power counting , 2005, nucl-th/0506005.

[136]  C. Barbieri,et al.  Self-consistent Green's function method for nuclei and nuclear matter , 2004, nucl-th/0402034.

[137]  M. Hjorth-Jensen,et al.  Coupled-cluster approach to nuclear physics , 2003, nucl-th/0308088.

[138]  S. Bogner,et al.  Model independent low momentum nucleon interaction from phase shift equivalence , 2003, nucl-th/0305035.

[139]  C. Bertulani,et al.  Effective field theory for halo nuclei: shallow p-wave states , 2002, nucl-th/0205063.

[140]  P. Bedaque,et al.  EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS* , 2002, nucl-th/0203055.

[141]  R. Furnstahl,et al.  Are occupation numbers observable , 2001, nucl-th/0108069.

[142]  S. Hartmann Effective field theories, reductionism and scientific explanation , 2001 .

[143]  S. C. Pieper,et al.  Benchmark Test Calculation of a Four-Nucleon Bound State , 2001, nucl-th/0104057.

[144]  P. Navrátil,et al.  Properties of 12-C in the ab-initio nuclear shell model*+ , 2001 .

[145]  Petr Navratil,et al.  The Ab Initio No-core Shell Model , 2001, 0902.3510.

[146]  R. Machleidt The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.

[147]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[148]  D. Lindley The Philosophy of Statistics , 2000 .

[149]  P. Navrátil,et al.  Properties of 12C in the Ab initio nuclear shell model. , 2000, Physical review letters.

[150]  Heisenberg,et al.  Microscopic calculation of the inclusive electron scattering structure function in 16O , 1999, Physical review letters.

[151]  U. V. Kolck Effective field theory of short-range forces , 1998, nucl-th/9808007.

[152]  P. Navrátil,et al.  Large-basis shell-model calculations for p-shell nuclei , 1998, nucl-th/9804014.

[153]  M. Wise,et al.  Two nucleon systems from effective field theory , 1998, nucl-th/9802075.

[154]  P. Lepage How to renormalize the Schrodinger equation , 1997, nucl-th/9706029.

[155]  J. Friar Nuclear Forces and Chiral Theories , 1995, nucl-th/9601012.

[156]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[157]  Zheng,et al.  Large-basis shell model studies of light nuclei with a multivalued G-matrix effective interaction. , 1995, Physical review. C, Nuclear physics.

[158]  R. Wiringa,et al.  Accurate nucleon-nucleon potential with charge-independence breaking. , 1995, Physical review. C, Nuclear physics.

[159]  D. Leinweber Essential Strangeness in Nucleon Magnetic Moments , 1994, nucl-th/9407039.

[160]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[161]  W. Glöckle The Quantum Mechanical Few-Body Problem , 1983 .

[162]  G. Box Science and Statistics , 1976 .

[163]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[164]  Hans A. Bethe,et al.  Nuclear Physics C. Nuclear Dynamics, Experimental , 1937 .

[165]  Hans A. Bethe,et al.  Nuclear Physics B. Nuclear Dynamics, Theoretical , 1937 .

[166]  Hans A. Bethe,et al.  Nuclear Physics A. Stationary States of Nuclei , 1936 .