Model Checking LTL over Controllable Linear Systems Is Decidable

The use of algorithmic verification and synthesis tools for hybrid systems is currently limited to systems exhibiting simple continuous dynamics such as timed automata or rectangular hybrid systems. In this paper we enlarge the class of systems amenable to algorithmic analysis and synthesis by showing decidability of model checking Linear Temporal Logic (LTL) formulas over discrete time, controllable, linear systems. This result follows from the construction of a language equivalent, finite abstraction of a control system based on a set of finite observations which correspond to the atomic propositions appearing in a given LTL formula. Furthermore, the size of this abstraction is shown to be polynomial in the dimension of the control system and the number of observations. These results open the doors for verification and synthesis of continuous and hybrid control systems from LTL specifications.

[1]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[2]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[3]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  Jennifer M. Davoren,et al.  Robust Controller Synthesis for Hybrid Systems Using Modal Logic , 2001, HSCC.

[6]  Panos J. Antsaklis,et al.  An invariant‐based approach to the design of hybrid control systems , 2001 .

[7]  B. Krogh,et al.  Synthesis of supervisory controllers for hybrid systems based on approximating automata , 1998, IEEE Trans. Autom. Control..

[8]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[9]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Rectangular Hybrid Systems , 2000, TACAS.

[10]  Bruce H. Krogh,et al.  Verification of infinite-state dynamic systems using approximate quotient transition systems , 2001, IEEE Trans. Autom. Control..

[11]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[12]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[13]  P. S. Thiagarajan,et al.  Branching time controllers for discrete event systems , 2002, Theor. Comput. Sci..

[14]  Pravin Varaiya,et al.  Decidability of Hybrid Systems with Rectangular Differential Inclusion , 1994, CAV.

[15]  Paulo Tabuada,et al.  Finite bisimulations of controllable linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[17]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[18]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[19]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[20]  P. S. Thiagarajan,et al.  Open Systems in Reactive Environments: Control and Synthesis , 2000, CONCUR.

[21]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[22]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[23]  Mireille E. Broucke A Geometric Approach to Bisimulation and Verification of Hybrid Systems , 1999, HSCC.

[24]  P. Hartman Ordinary Differential Equations , 1965 .

[25]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[26]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[27]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[28]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[29]  Sergio Yovine,et al.  On the Decidability of the Reachability Problem for Planar Differential Inclusions , 2001, HSCC.

[30]  Tiziana Margaria,et al.  Tools and algorithms for the construction and analysis of systems: a special issue for TACAS 2017 , 2001, International Journal on Software Tools for Technology Transfer.

[31]  Susanne Graf,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2000 .

[32]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[33]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[34]  Panos J. Antsaklis,et al.  Linear Systems , 1997 .

[35]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[36]  Jan H. van Schuppen,et al.  Control of Piecewise-Linear Hybrid Systems on Simplices and Rectangles , 2001, HSCC.

[37]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[38]  R. Kaiman KRONECKER INVARIANTS AND FEEDBACK , 1972 .

[39]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[40]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.