A meshless method to the numerical solution of an inverse reaction–diffusion–convection problem

In this paper, the determination of the source term in a reaction–diffusion convection problem is investigated. First with suitable transformations, the problem is reduced, then a new meshless method based on the use of the heat polynomials as basis functions is proposed to solve the inverse problem. Due to the ill-posed inverse problem, the Tikhonov regularization method with a generalized cross-validation criterion is employed to obtain a numerical stable solution. Finally, some numerical examples are presented to show the accuracy and effectiveness of the algorithm.

[1]  Y. C. Hon,et al.  Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection–diffusion problems , 2003 .

[2]  Daniel Lesnic,et al.  Determination of a source in the heat equation from integral observations , 2014, J. Comput. Appl. Math..

[3]  Ahmet Yildirim,et al.  Application of He's homotopy perturbation method for solving the Cauchy reaction-diffusion problem , 2009, Comput. Math. Appl..

[4]  Ching-yu Yang,et al.  A sequential method to estimate the strength of the heat source based on symbolic computation , 1998 .

[5]  Mehdi Dehghan,et al.  Inverse problem of time-dependent heat sources numerical reconstruction , 2011, Math. Comput. Simul..

[6]  Wei Cheng,et al.  A regularization method for solving the radially symmetric backward heat conduction problem , 2014, Appl. Math. Lett..

[7]  Jinbo Liu,et al.  Determination of a source term in a heat equation , 2010, Int. J. Comput. Math..

[8]  Chein-Shan Liu Finding unknown heat source in a nonlinear Cauchy problem by the Lie-group differential algebraic equations method , 2015 .

[9]  Liang Yan,et al.  A meshless method for solving an inverse spacewise-dependent heat source problem , 2009, J. Comput. Phys..

[10]  M. Dehghan,et al.  Application of He's variational iteration method for solving the Cauchy reaction-diffusion problem , 2008 .

[11]  J. Gillis,et al.  Nonlinear Partial Differential Equations in Engineering , 1967 .

[12]  Cong Shi,et al.  Numerical solution for an inverse heat source problem by an iterative method , 2014, Appl. Math. Comput..

[13]  Y. Hon,et al.  A fundamental solution method for inverse heat conduction problem , 2004 .

[14]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[15]  J. Cannon,et al.  Structural identification of an unknown source term in a heat equation , 1998 .

[16]  Fan Yang,et al.  A mollification regularization method for the inverse spatial-dependent heat source problem , 2014, J. Comput. Appl. Math..

[17]  Fan Yang,et al.  The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem , 2010, Comput. Math. Appl..

[18]  Po-Wen Hsieh,et al.  Analysis of a new stabilized finite element method for the reaction–convection–diffusion equations with a large reaction coefficient , 2012 .

[19]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[20]  Daniel Lesnic,et al.  The boundary-element method for the determination of a heat source dependent on one variable , 2006 .

[21]  Rongjun Cheng,et al.  Determination of a control parameter in a one-dimensional parabolic equation using the moving least-square approximation , 2008, Int. J. Comput. Math..

[22]  Zongmin Wu,et al.  Hermite-Birkhoff interpolation of scattered data by radial basis functions , 1992, Approximation Theory and its Applications.

[23]  Ousséni So,et al.  A numerical method for some nonlinear differential equation models in biology , 2008, Appl. Math. Comput..

[24]  D. L. Young,et al.  The method of fundamental solutions for solving incompressible Navier–Stokes problems , 2009 .

[25]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[26]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[27]  Jan Adam Kołodziej,et al.  Application of the method of fundamental solutions and radial basis functions for inverse heat source problem in case of steady-state , 2010 .

[28]  J. Cannon Determination of an Unknown Heat Source from Overspecified Boundary Data , 1968 .

[29]  Uno Hämarik,et al.  On the solution of ill‐posed problems by projection methods with a posteriori choice of the discretization level 1 , 2002 .

[30]  Ching-yu Yang,et al.  Solving the two-dimensional inverse heat source problem through the linear least-squares error method , 1998 .

[31]  Fazhan Geng,et al.  Application of the variational iteration method to inverse heat source problems , 2009, Comput. Math. Appl..

[32]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[33]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[34]  J. Vázquez The Porous Medium Equation , 2006 .

[35]  D. Lesnic,et al.  Determination of a spacewise dependent heat source , 2007 .

[36]  H. Ding,et al.  Solution of partial differential equations by a global radial basis function-based differential quadrature method , 2004 .

[37]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[38]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[39]  Chu-Li Fu,et al.  A computational method for identifying a spacewise‐dependent heat source , 2010 .

[40]  T. Liszka An interpolation method for an irregular net of nodes , 1984 .

[41]  B. Johansson,et al.  A procedure for determining a spacewise dependent heat source and the initial temperature , 2008 .

[42]  Jan Adam Kolodziej,et al.  Application of the method of fundamental solutions and radial basis functions for inverse transient heat source problem , 2010, Comput. Phys. Commun..

[43]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[44]  Ravi P. Agarwal,et al.  The One-Dimensional Heat Equation , 2009 .

[45]  Reza Zolfaghari,et al.  Determination of an unknown function in a parabolic inverse problem by Sinc‐collocation method , 2011 .

[46]  Reza Pourgholi,et al.  Solving an inverse heat conduction problem using genetic algorithm: Sequential and multi-core parallelization approach , 2014 .

[47]  W. Chen,et al.  A meshless, integration-free, and boundary-only RBF technique , 2002, ArXiv.

[48]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[49]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[50]  B. Tomas Johansson,et al.  A variational method for identifying a spacewise-dependent heat source , 2007 .

[51]  N. Coutris,et al.  A numerical solution of the linear multidimensional unsteady inverse heat conduction problem with the boundary element method and the singular value decomposition , 2004 .

[52]  Rostamian A Meshless Method for the Numerical Solution of an Inverse Reaction-Diffusion-Convection Problem , 2014 .

[53]  A. Shahrezaee,et al.  A meshless Method for Solving an inverse Time-dependent Heat Source Problem , 2013 .

[54]  C. Fu,et al.  The method of fundamental solutions for the inverse heat source problem. , 2008 .

[55]  Mehdi Dehghan,et al.  A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation , 2012 .

[56]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[57]  Nuno F. M. Martins,et al.  Recovering the source term in a linear diffusion problem by the method of fundamental solutions , 2008 .

[58]  J. Murray Lectures on nonlinear-differential-equation models in biology , 1977 .

[59]  Leevan Ling,et al.  Identification of source locations in two-dimensional heat equations , 2006 .

[60]  M. Arab,et al.  The method of fundamental solutions for the inverse space-dependent heat source problem , 2009 .

[61]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[62]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[63]  M. Razzaghi,et al.  A hybrid functions approach for the Duffing equation , 2013 .

[64]  Akpofure E. Taigbenu,et al.  Inverse solutions of temperature, heat flux and heat source by the Green element method , 2015 .

[65]  Yuan-Ming Wang,et al.  A modified accelerated monotone iterative method for finite difference reaction-diffusion-convection equations , 2011, J. Comput. Appl. Math..

[66]  R. Pourgholi,et al.  A numerical technique for solving IHCPs using Tikhonov regularization method , 2010 .

[67]  E. G. SAVATEEV,et al.  On problems of determining the source function in a parabolic equation , 1995 .