Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches

We present a possible approach for the computation of free energies and ensemble averages of one-dimensional coarse-grained models in materials science. The approach is based upon a thermodynamic limit process, and makes use of ergodic theorems and large deviations theory. In addition to providing a possible efficient computational strategy for ensemble averages, the approach allows for assessing the accuracy of approximations commonly used in practice.

[1]  Mihai Anitescu,et al.  A note on the regularity of reduced models obtained by nonlocal quasi-continuum-like approaches , 2009, Math. Program..

[2]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[3]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[4]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[5]  Particle systems, random media, and large deviations , 1985 .

[6]  Stefano Curtarolo,et al.  Dynamics of an inhomogeneously coarse grained multiscale system. , 2002, Physical review letters.

[7]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[8]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[9]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[10]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[11]  Mitchell Luskin,et al.  Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, Multiscale Model. Simul..

[12]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .

[13]  R. LeSar,et al.  Finite-temperature defect properties from free-energy minimization. , 1989, Physical review letters.

[14]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[15]  Pierre-Louis Lions,et al.  A Strengthened Central Limit Theorem for Smooth Densities , 1995 .

[16]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[17]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[18]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[19]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[20]  R. R. Bahadur,et al.  On Deviations of the Sample Mean , 1960 .

[21]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[22]  S. Varadhan Large Deviations and Applications , 1984 .

[23]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[24]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[25]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[26]  T. Frauenheim,et al.  Computer simulation of materials at atomic level , 2000 .

[27]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[28]  R. Ellis An overview of the theory of large deviations and applications to statistical mechanics , 1995 .

[30]  Pierre Rochus MR2339634,Blanc, Xavier and Le Bris, Claude and Lions, Pierre-Louis , Atomistic to continuum limits for computational materials scienceM2AN Math. Model. Numer. Anal. , 2007 .

[31]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[32]  Errico Presutti,et al.  Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics , 2008 .

[33]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[34]  P. Lions,et al.  Atomistic to continuum limits for computational materials science , 2007 .

[35]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[36]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[37]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[38]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[39]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[40]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[41]  Michael Griebel,et al.  Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline Solids , 2005, Multiscale Model. Simul..

[42]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[43]  B. Derrida,et al.  of Statistical Mechanics : Theory and Experiment Non-equilibrium steady states : fluctuations and large deviations of the density and of the current , 2007 .

[44]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[45]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[46]  E Weinan,et al.  Analysis of multiscale methods , 2004 .

[47]  E. Olivieri,et al.  Large deviations and metastability: Large deviations and statistical mechanics , 2005 .

[48]  F. Legoll,et al.  Analysis of a Prototypical Multiscale Method Coupling Atomistic and Continuum Mechanics: the Convex Case , 2007 .

[49]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[50]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.