Spontaneously stochastic Arnold's cat

We propose a simple model for the phenomenon of Eulerian spontaneous stochasticity in turbulence. This model is solved rigorously, proving that infinitesimal small-scale noise in otherwise a deterministic multi-scale system yields a large-scale stochastic process with Markovian properties. Besides its theoretical value, our model opens new ways for the experimental verification of spontaneous stochasticity in optics and electronics, and suggests new applications beyond fluid dynamics.

[1]  Theodore D. Drivas,et al.  A Lagrangian fluctuation–dissipation relation for scalar turbulence. Part I. Flows with no bounding walls , 2016, Journal of Fluid Mechanics.

[2]  S. Kuznetsov,et al.  Example of a physical system with a hyperbolic attractor of the Smale-Williams type. , 2005, Physical review letters.

[3]  Alexei A. Mailybaev,et al.  Spontaneous Stochasticity of Velocity in Turbulence Models , 2015, Multiscale Model. Simul..

[4]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[5]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .

[6]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[7]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[8]  De Barra Introduction to Measure Theory , 1974 .

[9]  A. Mailybaev Toward analytic theory of the Rayleigh–Taylor instability: lessons from a toy model , 2016, 1610.03181.

[10]  A. Mailybaev Spontaneously stochastic solutions in one-dimensional inviscid systems , 2015, 1512.04465.

[11]  C. E. Leith,et al.  Predictability of Turbulent Flows , 1972 .

[12]  V. Vicol,et al.  Convex integration constructions in hydrodynamics , 2020 .

[13]  Tim Palmer,et al.  The real butterfly effect , 2014 .

[14]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[15]  Edriss S. Titi,et al.  Mathematics and turbulence: where do we stand? , 2013, 1301.0273.

[16]  T. N. Palmer,et al.  Stochastic weather and climate models , 2019, Nature Reviews Physics.

[17]  T. Palmer Predicting uncertainty in forecasts of weather and climate , 2000 .

[18]  G. Eyink,et al.  Renormalization group approach to spontaneous stochasticity , 2020, 2007.01333.

[19]  J. Bec,et al.  From the butterfly effect to spontaneous stochasticity in singular shear flows , 2020 .

[20]  Eitan Tadmor,et al.  On the computation of measure-valued solutions , 2016, Acta Numerica.

[21]  Luca Biferale,et al.  Rayleigh-Taylor turbulence with singular nonuniform initial conditions , 2018, Physical Review Fluids.

[22]  A. Kupiainen Nondeterministic Dynamics and Turbulent Transport , 2003 .

[23]  Camillo De Lellis,et al.  Weak stability and closure in turbulence , 2021, Philosophical Transactions of the Royal Society A.

[24]  Theodore D. Drivas,et al.  Statistical determinism in non-Lipschitz dynamical systems , 2020, Ergodic Theory and Dynamical Systems.

[25]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[26]  E Weinan,et al.  Generalized flows, intrinsic stochasticity, and turbulent transport , 2000, nlin/0003028.

[27]  D. Ruelle Microscopic fluctuations and turbulence , 1979 .

[28]  G. Eyink Turbulence noise , 1996 .

[29]  Kalin Kanov,et al.  Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence , 2013, Nature.

[30]  S. Musacchio,et al.  Predictability of the inverse energy cascade in 2D turbulence , 2000, nlin/0006014.

[31]  Denis Bernard,et al.  Slow Modes in Passive Advection , 1998 .

[32]  Walton Hall,et al.  Anosov Parameter Values for the Triple Linkage and a Physical System with a Uniformly Chaotic Attractor , 2003 .