A Threshold for Quantum Advantage in Derivative Pricing

We give an upper bound on the resources required for valuable quantum advantage in pricing derivatives. To do so, we give the first complete resource estimates for useful quantum derivative pricing, using autocallable and Target Accrual Redemption Forward (TARF) derivatives as benchmark use cases. We uncover blocking challenges in known approaches and introduce a new method for quantum derivative pricing – the re-parameterization method – that avoids them. This method combines pre-trained variational circuits with fault-tolerant quantum computing to dramatically reduce resource requirements. We find that the benchmark use cases we examine require 8k logical qubits and a T-depth of 54 million. We estimate that quantum advantage would require executing this program at the order of a second. While the resource requirements given here are out of reach of current systems, we hope they will provide a roadmap for further improvements in algorithms, implementations, and planned hardware architectures.

[1]  Stefan Woerner,et al.  Quantum risk analysis , 2018, npj Quantum Information.

[2]  I. Tavernelli,et al.  Nonadiabatic Molecular Quantum Dynamics with Quantum Computers. , 2020, Physical review letters.

[3]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[4]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[5]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[6]  Scott Aaronson,et al.  Quantum Approximate Counting, Simplified , 2019, SOSA.

[7]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[9]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[10]  Martin Rötteler,et al.  Optimizing Quantum Circuits for Arithmetic , 2018, ArXiv.

[11]  S. Wiesner Simulations of Many-Body Quantum Systems by a Quantum Computer , 1996, quant-ph/9603028.

[12]  H. Neven,et al.  Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage , 2020, 2011.04149.

[13]  Himanshu Thapliyal,et al.  T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm , 2017, ACM J. Emerg. Technol. Comput. Syst..

[14]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[15]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[16]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[17]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[18]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[19]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[21]  Jakub Marecek,et al.  Quantum Computing for Finance: State-of-the-Art and Future Prospects , 2020, IEEE Transactions on Quantum Engineering.

[22]  Kouhei Nakaji Faster amplitude estimation , 2020, Quantum Inf. Comput..

[23]  Stefan Woerner,et al.  Credit Risk Analysis Using Quantum Computers , 2019, IEEE Transactions on Computers.

[24]  Iordanis Kerenidis,et al.  Low depth algorithms for quantum amplitude estimation , 2020, ArXiv.

[25]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[26]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[27]  Raymond H. Putra,et al.  Amplitude estimation via maximum likelihood on noisy quantum computer , 2020, Quantum Information Processing.

[28]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[29]  Taewan Kim,et al.  Efficient decomposition methods for controlled-Rn using a single ancillary qubit , 2018, Scientific Reports.

[30]  vCaslav Brukner,et al.  Quantum-state preparation with universal gate decompositions , 2010, 1003.5760.

[31]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[32]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[33]  Kazuyoshi Yoshino,et al.  Quantum pricing with a smile: implementation of local volatility model on quantum computer , 2020, EPJ Quantum Technology.

[34]  Naoki Yamamoto,et al.  Amplitude estimation without phase estimation , 2019, Quantum Information Processing.

[35]  Stefan Woerner,et al.  Iterative quantum amplitude estimation , 2019, npj Quantum Information.

[36]  Yasuhiro Takahashi,et al.  Quantum addition circuits and unbounded fan-out , 2009, Quantum Inf. Comput..

[37]  Dmitri Maslov,et al.  Reversible Circuit Optimization Via Leaving the Boolean Domain , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[38]  Steven Herbert The Problem with Grover-Rudolph State Preparation for Quantum Monte-Carlo , 2021, 2101.02240.

[39]  Yue Sun,et al.  Option Pricing using Quantum Computers , 2019, Quantum.

[40]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[41]  Adam Bouland,et al.  Prospects and challenges of quantum finance , 2020, 2011.06492.