A kinetic model of pulsed sheaths

The ion distribution function is calculated as a function of time, self‐consistently with the electrostatic potential in two spatial coordinates for a pulsed sheath experiment. Such pulsed sheaths are used for a variety of purposes, including modification of material surfaces. The accuracy of the model is established by comparing the time varying ion density with experimental measurements. Additionally, the first reported prediction of the ion velocity distribution in this kind of pulsed sheath is given. This is important because the velocity distribution of the ions striking the surface determines how the surface material is modified.

[1]  K. Heidemann,et al.  Model of temperature dependent defect interaction and amorphization in crystalline silicon during ion irradiation , 1986 .

[2]  H. W. Salzberg,et al.  The Collected Works of Irving Langmuir , 1963 .

[3]  Michael A. Lieberman,et al.  Model of plasma immersion ion implantation , 1989 .

[4]  D. Thompson High density cascade effects , 1981 .

[5]  Daniel J. Koch,et al.  An efficient scheme for convection-dominated transport , 1989 .

[6]  G. Emmert,et al.  Numerical simulation of plasma sheath expansion, with applications to plasma‐source ion implantation , 1992 .

[7]  M. Lieberman,et al.  Model of plasma immersion ion implantation for voltage pulses with finite rise and fall times , 1991 .

[8]  N. Cheung,et al.  Characteristics of sub-100-nm p/sup +//n junctions fabricated by plasma immersion ion implantation , 1993, IEEE Electron Device Letters.

[9]  Kumar Sridharan,et al.  Sheath dynamics and dose analysis for planar targets in plasma source ion implantation , 1993 .

[10]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[11]  James E. Lawler,et al.  Physical and numerical verification of discharge calculations , 1993 .

[12]  Eric R. Keiter,et al.  Kinetic simulation of a time-dependent two-dimensional plasma , 1994 .

[13]  J. Conrad,et al.  Model of plasma source ion implantation in planar, cylindrical, and spherical geometries , 1990 .

[14]  J. R. Conrad,et al.  Plasma source ion-implantation technique for surface modification of materials , 1987 .

[15]  Monte Carlo calculation of one- and two-dimensional particle and damage distributions for ion-implanted dopants in silicon , 1985 .

[16]  M. M. Widner,et al.  Ion Acoustic Wave Excitation and Ion Sheath Evolution , 1970 .

[17]  T. E. Sheridan,et al.  Collisional sheath dynamics , 1995 .

[18]  M. Goeckner,et al.  Laser‐induced fluorescence measurement of the dynamics of a pulsed planar sheath , 1994 .