Nafion/SiO2 hybrid membrane for vanadium redox flow battery

Abstract Sol–gel derived Nafion/SiO2 hybrid membrane is prepared and employed as the separator for vanadium redox flow battery (VRB) to evaluate the vanadium ions permeability and cell performance. Nafion/SiO2 hybrid membrane shows nearly the same ion exchange capacity (IEC) and proton conductivity as pristine Nafion 117 membrane. ICP-AES analysis reveals that Nafion/SiO2 hybrid membrane exhibits dramatically lower vanadium ions permeability compared with Nafion membrane. The VRB with Nafion/SiO2 hybrid membrane presents a higher coulombic and energy efficiencies over the entire range of current densities (10–80 mA cm−2), especially at relative lower current densities (

[1]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[2]  T. Zhao,et al.  Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells , 2005 .

[3]  Haruhiko Ohya,et al.  Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery , 1996 .

[4]  Toraj Mohammadi,et al.  Evaluation of the chemical stability of some membranes in vanadium solution , 1997 .

[5]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content , 2001 .

[6]  A. Manthiram,et al.  Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells , 2004 .

[7]  S. C. Zhang,et al.  The Microstructure and Character of the PVDF-g-PSSA Membrane Prepared by Solution Grafting , 2003 .

[8]  C. Rydh,et al.  Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements , 2005 .

[9]  K. Mauritz,et al.  Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies , 1989 .

[10]  Yasushi Katayama,et al.  Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods , 2005 .

[11]  B. Tian,et al.  Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery , 2004 .

[12]  Ch. Fabjan,et al.  Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems , 2004 .

[13]  S. Iwasa,et al.  Development of a novel redox flow battery for electricity storage system , 2003 .

[14]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[15]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[16]  K. Mauritz,et al.  Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions : Characterization of fundamental properties , 1998 .

[17]  Ch. Fabjan,et al.  The vanadium redox-battery: an efficient storage unit for photovoltaic systems , 2001 .

[18]  Microstructural Evolution of a Silicon Oxide Phase in a Perfluorosulfonic Acid Ionomer by an In Situ Sol-Gel Reaction .2. Dielectric Relaxation Studies , 1990 .

[19]  H. Ohya,et al.  Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery , 1997 .

[20]  Maria Skyllas-Kazacos,et al.  Membrane stability studies for vanadium redox cell applications , 2004 .

[21]  S. V. Davis,et al.  Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction , 1995 .

[22]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[23]  Maria Skyllas-Kazacos,et al.  Evaluation of membranes for the novel vanadium bromine redox flow cell , 2006 .

[24]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[25]  C. Rydh Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage , 1999 .

[26]  San Ping Jiang,et al.  Layer‐by‐Layer Self‐Assembly of Composite Polyelectrolyte–Nafion Membranes for Direct Methanol Fuel Cells , 2006 .

[27]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[28]  Björn A. Sandén,et al.  Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies , 2005 .

[29]  Xinping Qiu,et al.  Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries. , 2005, The journal of physical chemistry. B.

[30]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.