Quantum game theory based on the Schmidt decomposition

We present a novel formulation of quantum game theory based on the Schmidt decomposition, which has the merit that the entanglement of quantum strategies is manifestly quantified. We apply this formulation to 2-player, 2-strategy symmetric games and obtain a complete set of quantum Nash equilibria. Apart from those available with the maximal entanglement, these quantum Nash equilibria are extensions of the Nash equilibria in classical game theory. The phase structure of the equilibria is determined for all values of entanglement, and thereby the possibility of resolving the dilemmas by entanglement in the game of Chicken, the Battle of the Sexes, the Prisoners' Dilemma, and the Stag Hunt, is examined. We find that entanglement transforms these dilemmas with each other but cannot resolve them, except in the Stag Hunt game where the dilemma can be alleviated to a certain degree.

[1]  Peter Høyer,et al.  Consequences and limits of nonlocal strategies , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[2]  Jiangfeng Du,et al.  Experimental realization of quantum games on a quantum computer. , 2001, Physical Review Letters.

[3]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[4]  A. H. Toor,et al.  Generalized quantization scheme for two-person non-zero sum games , 2004 .

[5]  Taksu Cheon,et al.  Altruistic contents of quantum prisoner's dilemma , 2004, quant-ph/0406157.

[6]  Azhar Iqbal Studies in the Theory of Quantum Games , 2005 .

[7]  G. Brassard,et al.  Quantum Pseudo-Telepathy , 2004, quant-ph/0407221.

[8]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[9]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[10]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[11]  Maureen Shawn Kennedy The states of play. , 2008, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[12]  Sahin Kaya Ozdemir,et al.  Quantum and classical correlations between players in game theory , 2003 .

[13]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[14]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[15]  T. Cheon Altruistic duality in evolutionary game theory , 2003, cond-mat/0305351.

[16]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[17]  A. Messiah Quantum Mechanics , 1961 .

[18]  Neil Johnson,et al.  Efficiency and formalism of quantum games , 2003 .

[19]  Taksu Cheon,et al.  Classical and quantum contents of solvable game theory on Hilbert space , 2006 .

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[22]  Hui Li,et al.  Phase-transition-like behaviour of quantum games , 2001 .

[23]  S. C. Benjamin Comment on “A quantum approach to static games of complete information” , 2000 .

[24]  Adrian P. Flitney,et al.  Nash equilibria in quantum games with generalized two-parameter strategies , 2007 .

[25]  L. Vaidman,et al.  Quantum advantages in classically defined tasks , 2008 .

[26]  Adrian P. Flitney,et al.  Aspects of quantum game theory , 2005 .

[27]  Navroz Patel Quantum games: States of play , 2007, Nature.

[28]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[29]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[30]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[31]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[32]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[33]  Tsubasa Ichikawa,et al.  Duality, phase structures, and dilemmas in symmetric quantum games , 2006 .