A Survey on the Computational Complexity of Coloring Graphs with Forbidden Subgraphs

For a positive integer $k$, a $k$-colouring of a graph $G=(V,E)$ is a mapping $c: V\rightarrow\{1,2,...,k\}$ such that $c(u)\neq c(v)$ whenever $uv\in E$. The Colouring problem is to decide, for a given $G$ and $k$, whether a $k$-colouring of $G$ exists. If $k$ is fixed (that is, it is not part of the input), we have the decision problem $k$-Colouring instead. We survey known results on the computational complexity of Colouring and $k$-Colouring for graph classes that are characterized by one or two forbidden induced subgraphs. We also consider a number of variants: for example, where the problem is to extend a partial colouring, or where lists of permissible colours are given for each vertex.

[1]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[2]  Klaus Jansen,et al.  Complexity Results for the Optimum Cost Chromatic Partition Problem , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[3]  Ingo Schiermeyer,et al.  A note on Brooks' theorem for triangle-free graphs , 2002, Australas. J Comb..

[4]  David S. Johnson,et al.  Stockmeyer: some simplified np-complete graph problems , 1976 .

[5]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .

[6]  Petr A. Golovach,et al.  Choosability on H-free graphs , 2013, Inf. Process. Lett..

[7]  Konrad Dabrowski,et al.  Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs , 2014, Comput. J..

[8]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[9]  Konrad Dabrowski,et al.  Bounding Clique-Width via Perfect Graphs , 2014, LATA.

[10]  Jian Song,et al.  Closing complexity gaps for coloring problems on H-free graphs , 2014, Inf. Comput..

[11]  J. Kleinberg The Disjoint Paths Problem , 1995 .

[12]  Zsolt Tuza,et al.  Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.

[13]  Konrad Dabrowski,et al.  Narrowing the gap in the clique-width dichotomy for $(H_1, H_2)$-free graphs , 2015, ArXiv.

[14]  Rajiv Raman,et al.  Colouring vertices of triangle-free graphs without forests , 2012, Discret. Math..

[15]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[16]  Konrad Dabrowski,et al.  Bounding the Clique‐Width of H‐Free Chordal Graphs , 2015, J. Graph Theory.

[17]  Dieter Kratsch,et al.  On the structure of (P5, gem)-free graphs , 2005, Discret. Appl. Math..

[18]  Frédéric Maffray,et al.  4-coloring (P6, bull)-free graphs , 2017, Discret. Appl. Math..

[19]  Shenwei Huang,et al.  Improved complexity results on k-coloring Pt-free graphs , 2013, Eur. J. Comb..

[20]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[21]  Maria Chudnovsky,et al.  Obstructions for three-coloring graphs with one forbidden induced subgraph , 2016, SODA.

[22]  Ingo Schiermeyer,et al.  3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..

[23]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[24]  Stefan Hougardy,et al.  Uniquely Colourable Graphs and the Hardness of Colouring Graphs of Large Girth , 1998, Combinatorics, Probability and Computing.

[25]  Petr A. Golovach,et al.  Coloring graphs characterized by a forbidden subgraph , 2012, Discret. Appl. Math..

[26]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[27]  Ingo Schiermeyer,et al.  Three-colourability and forbidden subgraphs. II: polynomial algorithms , 2002, Discret. Math..

[28]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[29]  Andreas Brandstädt,et al.  P6- and triangle-free graphs revisited: structure and bounded clique-width , 2006, Discret. Math. Theor. Comput. Sci..

[30]  T. Gallai,et al.  Maximum-Minimum Sätze über Graphen , 1958 .

[31]  Jian Song,et al.  Coloring graphs without short cycles and long induced paths , 2011, Discret. Appl. Math..

[32]  Frédéric Maffray,et al.  On 3-Colorable P5-Free Graphs , 2012, SIAM J. Discret. Math..

[33]  Jian Song,et al.  Updating the complexity status of coloring graphs without a fixed induced linear forest , 2012, Theor. Comput. Sci..

[34]  Dmitriy S. Malyshev,et al.  Two cases of polynomial-time solvability for the coloring problem , 2016, J. Comb. Optim..

[35]  Dmitriy S. Malyshev,et al.  The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs , 2015, Discret. Math..

[36]  Premysl Holub,et al.  4-colorability of P6-free graphs , 2015, Electron. Notes Discret. Math..

[37]  Dallas J. Fraser,et al.  A Coloring Algorithm for $4K_1$-free line graphs , 2015, ArXiv.

[38]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[39]  Maya Jakobine Stein,et al.  3-Colouring graphs without triangles or induced paths on seven vertices , 2014, ArXiv.

[40]  Oliver Schaudt,et al.  Exhaustive generation of $k$-critical $\mathcal H$-free graphs , 2015, ArXiv.

[41]  Maria Chudnovsky,et al.  Three-coloring graphs with no induced seven-vertex path II : using a triangle , 2015, ArXiv.

[42]  Endre Szemerédi,et al.  Induced subtrees in graphs of large chromatic number , 1980, Discret. Math..

[43]  Petr A. Golovach,et al.  Choosability of P5-Free Graphs , 2009, MFCS.

[44]  Kurt Mehlhorn,et al.  Certifying algorithms , 2011, Comput. Sci. Rev..

[45]  Maria Chudnovsky,et al.  Three-coloring graphs with no induced seven-vertex path I : the triangle-free case , 2014, ArXiv.

[46]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..

[47]  Daniël Paulusma,et al.  Narrowing the Complexity Gap for Colouring (C s , P t )-Free Graphs , 2014, AAIM.

[48]  Jinquan Dong Some results on graphs without long induced paths , 1996 .

[49]  Shai Gutner,et al.  The complexity of planar graph choosability , 1996, Discret. Math..

[50]  Xiao Wang,et al.  Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree , 2017, J. Comb. Optim..

[51]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[52]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[53]  Joe Sawada,et al.  Constructions of k-critical P5-free graphs , 2015, Discret. Appl. Math..

[54]  Javier Marenco,et al.  Exploring the complexity boundary between coloring and list-coloring , 2009, Ann. Oper. Res..

[55]  Petr A. Golovach,et al.  List Coloring in the Absence of Two Subgraphs , 2013, CIAC.

[56]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[57]  Chính T. Hoàng,et al.  Polynomial-time algorithms for minimum weighted colorings of ()-free graphs and similar graph classes , 2015, Discret. Appl. Math..

[58]  Jian Song,et al.  Closing Complexity Gaps for Coloring Problems on H-Free Graphs , 2012, ISAAC.

[59]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[60]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[61]  Stephan Olariu,et al.  Paw-Fee Graphs , 1988, Inf. Process. Lett..

[62]  Dmitriy S. Malyshev,et al.  The coloring problem for classes with two small obstructions , 2013, Optim. Lett..

[63]  J. K. Il Precoloring Extension with Fixed Color Bound , 1994 .

[64]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[65]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[66]  Daniël Paulusma,et al.  Narrowing the Complexity Gap for Colouring (Cs, Pt)-Free Graphs , 2015, Comput. J..

[67]  Chính T. Hoàng,et al.  A Characterization of b‐Perfect Graphs , 2010, J. Graph Theory.

[68]  Vadim V. Lozin,et al.  Coloring vertices of claw-free graphs in three colors , 2014, J. Comb. Optim..

[69]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[70]  Dmitriy S. Malyshev,et al.  The coloring problem for {P5, P̅5}-free graphs and {P5, Kp-e}-free graphs is polynomial , 2015, ArXiv.

[71]  Stephan Brandt,et al.  Triangle-free graphs and forbidden subgraphs , 2002, Discret. Appl. Math..

[72]  M. Chudnovsky Coloring graphs with forbidden induced subgraphs , 2014 .

[73]  Bert Randerath,et al.  3-Colorability and forbidden subgraphs. I: Characterizing pairs , 2004, Discret. Math..

[74]  Bert Randerath 3-Colourability and Forbidden Subgraphs , 2000, Electron. Notes Discret. Math..

[75]  András Gyárfás,et al.  List-Coloring Claw-Free Graphs with Small Clique Number , 2014, Graphs Comb..

[76]  Maya Jakobine Stein,et al.  Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven Vertices , 2018, Comb..

[77]  Oliver Schaudt,et al.  Exhaustive generation of k‐critical H ‐free graphs , 2015, J. Graph Theory.

[78]  N. Alon Restricted colorings of graphs , 1993 .

[79]  Joe Sawada,et al.  A Certifying Algorithm for 3-Colorability of P5-Free Graphs , 2009, ISAAC.

[80]  Fred Galvin,et al.  The List Chromatic Index of a Bipartite Multigraph , 1995, J. Comb. Theory B.

[81]  Jian Song,et al.  4-coloring H-free graphs when H is small , 2012, Discret. Appl. Math..

[82]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.

[83]  Zsolt Tuza,et al.  New trends in the theory of graph colorings: Choosability and list coloring , 1997, Contemporary Trends in Discrete Mathematics.

[84]  Chính T. Hoàng,et al.  On color-critical (P5, co-P5)-free graphs , 2017, Discret. Appl. Math..

[85]  Harjinder S. Dhaliwal,et al.  On color-critical ($P_{5},\overline{P}_5$)-free graphs , 2014 .

[86]  Baogang Xu,et al.  Forbidden Subgraphs and 3-Colorings , 2014, SIAM J. Discret. Math..

[87]  Andreas Brandstädt,et al.  Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width , 2004, Int. J. Found. Comput. Sci..

[88]  David Schindl,et al.  Some new hereditary classes where graph coloring remains NP-hard , 2005, Discret. Math..

[89]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.

[90]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[91]  Javier Marenco,et al.  Exploring the complexity boundary between coloring and list-coloring , 2006, Electron. Notes Discret. Math..

[92]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[93]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[94]  Van Bang Le,et al.  On the complexity of 4-coloring graphs without long induced paths , 2007, Theor. Comput. Sci..

[95]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[96]  Vadim V. Lozin,et al.  Vertex coloring of graphs with few obstructions , 2017, Discret. Appl. Math..

[97]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[98]  Louis Esperet,et al.  The chromatic number of {P5, K4}-free graphs , 2013, Discret. Math..

[99]  Petr A. Golovach,et al.  List Coloring in the Absence of a Linear Forest , 2011, Algorithmica.

[100]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[101]  Artem V. Pyatkin Triangle-free 2P3-free graphs are 4-colorable , 2013, Discret. Math..

[102]  Stanley Wagon,et al.  A bound on the chromatic number of graphs without certain induced subgraphs , 1980, J. Comb. Theory, Ser. B.

[103]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[104]  Daniël Paulusma,et al.  Open Problems on Graph Coloring for Special Graph Classes , 2015, WG.

[105]  Shai Gutner,et al.  Some results on (a: b)-choosability , 2008, Discret. Math..

[106]  Shenwei Huang Improved Complexity Results on k-Coloring P t -Free Graphs , 2013, MFCS.

[107]  Sylvain Gravier,et al.  Coloring the hypergraph of maximal cliques of a graph with no long path , 2003, Discret. Math..

[108]  Chính T. Hoàng,et al.  Polynomial-time algorithms for minimum weighted colorings of ($P_5, \bar{P}_5$)-free graphs and related graph classes , 2014, ArXiv.

[109]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[110]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[111]  Vadim V. Lozin,et al.  Vertex 3-colorability of Claw-free Graphs , 2007, Algorithmic Oper. Res..

[112]  Maria Chudnovsky,et al.  4‐Coloring P6‐Free Graphs with No Induced 5‐Cycles , 2014, J. Graph Theory.

[113]  Shenwei Huang,et al.  Complexity of coloring graphs without paths and cycles , 2013, Discret. Appl. Math..

[114]  Paul Wollan,et al.  Finding topological subgraphs is fixed-parameter tractable , 2010, STOC.

[115]  Dieter Rautenbach,et al.  Some results on graphs without long induced paths , 2003, Inf. Process. Lett..

[116]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[117]  Petr A. Golovach,et al.  On the parameterized complexity of coloring graphs in the absence of a linear forest , 2012, J. Discrete Algorithms.

[118]  Gerhard J. Woeginger,et al.  The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..

[119]  Petr Vrána,et al.  4-colorability of P 6-free graphs ? , 2015 .

[120]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[121]  Petr A. Golovach,et al.  Three complexity results on coloring Pk-free graphs , 2009, Eur. J. Comb..

[122]  Raffaele Mosca,et al.  On (P5, diamond)-free graphs , 2002, Discret. Math..

[123]  Jian Song,et al.  Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time , 2012, Theor. Comput. Sci..

[124]  Konrad Dabrowski,et al.  Colouring of graphs with Ramsey-type forbidden subgraphs , 2013, Theor. Comput. Sci..

[125]  Roland Häggkvist,et al.  Some upper bounds on the total and list chromatic numbers of multigraphs , 1992, J. Graph Theory.

[126]  Petr A. Golovach,et al.  Three complexity results on coloring Pk-free graphs , 2013 .