Descent of nearby cycle formula for Newton non-degenerate functions

We prove a descent theorem of nearby cycle formula for Newton non-degenerate functions at the origin (as well as its motivic version) without assuming the convenience condition. In the isolated singularity case, these imply some well-known formula for the number of Jordan blocks of the Milnor monodromy with the theoretically maximal size, using a standard estimate of weights (where we do not need a theory of the duals of logarithmic complexes on toric varieties). They also provide a proof of a modified version of Steenbrink conjecture on spectral pairs for non-degenerate functions with simplicial Newton polyhedra in the isolated singularity case (which is false in the non-simplicial case).

[1]  M. Saito Intersection complexes of toric varieties and mixed Hodge modules , 2020, 2006.04081.

[2]  D. Straten The Spectrum of Hypersurface Singularities , 2020, 2003.00519.

[3]  Seung-Jo Jung,et al.  Spectrum of non-degenerate functions with simplicial Newton polyhedra , 2019 .

[4]  Seung-Jo Jung,et al.  Spectrum of non-degenerate functions with simplicial Newton polytopes , 2019, 1911.09465.

[5]  Seung-Jo Jung,et al.  Hodge ideals and spectrum of isolated hypersurface singularities , 2019, Annales de l'Institut Fourier.

[6]  M. Saito,et al.  Weight zero part of the first cohomology of complex algebraic varieties , 2018, 1804.03632.

[7]  M. Saito,et al.  Hodge ideals and microlocal V-filtration , 2016, 1612.08667.

[8]  A. Stapledon Formulas for monodromy , 2014, 1405.5355.

[9]  A. Dimca,et al.  Some remarks on limit mixed Hodge structures and spectrum , 2012, 1210.3971.

[10]  M. Saito,et al.  Hirzebruch–Milnor classes of complete intersections , 2012, 1205.6447.

[11]  M. Saito,et al.  Jumping coefficients and spectrum of a hyperplane arrangement , 2009, 0903.3839.

[12]  Nathalie Jacobs Springer , 2006 .

[13]  M. Saito,et al.  Multiplier ideals, $b$-function, and spectrum of a hypersurface singularity , 2004, Compositio Mathematica.

[14]  Franziska Bittner On motivic zeta functions and the motivic nearby fiber , 2003, math/0307033.

[15]  M. Saito,et al.  Multiplier ideals, V-filtration, and spectrum , 2003, math/0305118.

[16]  E. Looijenga Motivic measures , 2000, math/0006220.

[17]  J. Denef,et al.  Geometry on Arc Spaces of Algebraic Varieties , 2000, math/0006050.

[18]  M. Saito,et al.  On Steenbrink's conjecture , 1991 .

[19]  M. Saito,et al.  Mixed Hodge modules , 1990 .

[20]  M. Saito,et al.  Modules de Hodge Polarisables , 1988 .

[21]  M. Saito,et al.  Exponents and Newton polyhedra of isolated hypersurface singularities , 1988 .

[22]  A. Klyachko,et al.  NEWTON POLYHEDRA AND AN ALGORITHM FOR COMPUTING HODGE?DELIGNE NUMBERS , 1987 .

[23]  J. H. M. Steenbrink,et al.  On the mixed Hodge structure on the cohomology of the Milnor fibre , 1985 .

[24]  Günter Ewald,et al.  CONVEX BODIES AND ALGEBRAIC GEOMETRY , 1985 .

[25]  F. Ehlers,et al.  Minimal characteristic exponent of the Gauss-Manin connection of isolated singular point and Newton polyhedron , 1982 .

[26]  A N Varčenko,et al.  ASYMPTOTIC HODGE STRUCTURE IN THE VANISHING COHOMOLOGY , 1982 .

[27]  V. Danilov Newton polyhedra and vanishing cohomology , 1979 .

[28]  V. Danilov,et al.  THE GEOMETRY OF TORIC VARIETIES , 1978 .

[29]  A. Varchenko Zeta-function of monodromy and Newton's diagram , 1976 .

[30]  A. G. Kouchnirenko Polyèdres de Newton et nombres de Milnor , 1976 .

[31]  Egbert Brieskorn,et al.  Die monodromie der isolierten singularitäten von hyperflächen , 1970 .

[32]  Jean-Pierre Serre Faisceaux algébriques cohérents , 1955 .

[33]  S. Fienberg,et al.  Algebraic Geometry , 2022, Wiley Encyclopedia of Computer Science and Engineering.

[34]  M. Saito,et al.  On microlocal b-function , 1994 .

[35]  J. Stevens,et al.  Spectral pairs and the topology of curve singularities , 1991 .

[36]  J. Steenbrink The spectrum of hypersurface singularities , 1989 .

[37]  J. Steenbrink Intersection form for quasi-homogeneous singularities , 1977 .

[38]  J. H. M. Steenbrink,et al.  Mixed Hodge Structure on the Vanishing Cohomology , 1977 .

[39]  B. Malgrange,et al.  Le polynome de Bernstein d’une singularite isolee , 1975 .

[40]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[41]  J. Verdier Dualité dans la cohomologie des espaces localement compacts , 1966 .

[42]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .