Global conformance checking measures using shallow representation and deep learning

[1]  Stephen P. Boyd,et al.  Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization , 2022, IEEE Access.

[2]  Marlon Dumas,et al.  Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and Scalable Approach , 2022, IEEE Transactions on Knowledge and Data Engineering.

[3]  Jochen De Weerdt,et al.  Can deep neural networks learn process model structure? An assessment framework and analysis , 2022, ICPM Workshops.

[4]  K. Pohl,et al.  Counterfactual Explanations for Predictive Business Process Monitoring , 2022, EMCIS.

[5]  Dirk Fahland,et al.  Process Discovery Using Graph Neural Networks , 2021, 2021 3rd International Conference on Process Mining (ICPM).

[6]  Antonino Rullo,et al.  A multi-perspective approach for the analysis of complex business processes behavior , 2021, Expert Syst. Appl..

[7]  Artem Polyvyanyy,et al.  Conformance checking of partially matching processes: An entropy-based approach , 2021, Inf. Syst..

[8]  Gero J. Kolhof,et al.  Scalable Online Conformance Checking Using Incremental Prefix-Alignment Computation , 2020, ICSOC Workshops.

[9]  Seppe K. L. M. vanden Broucke,et al.  Conformance Checking Using Activity and Trace Embeddings , 2020, BPM.

[10]  Marcello La Rosa,et al.  Predictive Business Process Monitoring via Generative Adversarial Nets: The Case of Next Event Prediction , 2020, BPM.

[11]  Mohammadreza Fani Sani,et al.  Conformance Checking Approximation Using Subset Selection and Edit Distance , 2019, CAiSE.

[12]  M. Dumas,et al.  Scalable Alignment of Process Models and Event Logs: An Approach Based on Automata and S-Components , 2019, Inf. Syst..

[13]  Niek Tax,et al.  Evaluating Conformance Measures in Process Mining using Conformance Propositions (Extended version) , 2019, Trans. Petri Nets Other Model. Concurr..

[14]  Stefan Wrobel,et al.  A review of machine learning for the optimization of production processes , 2019, The International Journal of Advanced Manufacturing Technology.

[15]  Kubilay Atasu,et al.  Linear-Complexity Data-Parallel Earth Mover's Distance Approximations , 2019, ICML.

[16]  Sander J. J. Leemans,et al.  Stochastic-Aware Conformance Checking: An Entropy-Based Approach , 2019, CAiSE.

[17]  Claudio Di Ciccio,et al.  Monotone Precision and Recall Measures for Comparing Executions and Specifications of Dynamic Systems , 2018, ACM Trans. Softw. Eng. Methodol..

[18]  Seppe K. L. M. vanden Broucke,et al.  act2vec, trace2vec, log2vec, and model2vec: Representation Learning for Business Processes , 2018, BPM.

[19]  Dirk Fahland,et al.  The Imprecisions of Precision Measures in Process Mining , 2017, Inf. Process. Lett..

[20]  Jana-Rebecca Rehse,et al.  Predicting process behaviour using deep learning , 2016, Decis. Support Syst..

[21]  Marlon Dumas,et al.  Predictive Business Process Monitoring with LSTM Neural Networks , 2016, CAiSE.

[22]  Josep Carmona,et al.  A Unified Approach for Measuring Precision and Generalization Based on Anti-alignments , 2016, BPM.

[23]  Sander J. J. Leemans,et al.  Scalable process discovery and conformance checking , 2016, Software & Systems Modeling.

[24]  Hajo A. Reijers,et al.  Balanced multi-perspective checking of process conformance , 2016, Computing.

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Bart Baesens,et al.  Determining Process Model Precision and Generalization with Weighted Artificial Negative Events , 2014, IEEE Transactions on Knowledge and Data Engineering.

[27]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[28]  Sander J. J. Leemans,et al.  Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour , 2013, Business Process Management Workshops.

[29]  Boudewijn F. van Dongen,et al.  On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery , 2012, OTM Conferences.

[30]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[31]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[32]  Josep Carmona,et al.  A Fresh Look at Precision in Process Conformance , 2010, BPM.

[33]  Bart Baesens,et al.  Robust Process Discovery with Artificial Negative Events , 2009, J. Mach. Learn. Res..

[34]  Wil M. P. van der Aalst,et al.  Conformance checking of processes based on monitoring real behavior , 2008, Inf. Syst..

[35]  Wil M. P. van der Aalst,et al.  Conformance Testing: Measuring the Fit and Appropriateness of Event Logs and Process Models , 2005, Business Process Management Workshops.

[36]  Boudewijn F. van Dongen,et al.  The ProM Framework: A New Era in Process Mining Tool Support , 2005, ICATPN.

[37]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[38]  Wil M. P. van der Aalst,et al.  Workflow mining: discovering process models from event logs , 2004, IEEE Transactions on Knowledge and Data Engineering.

[39]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[40]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[41]  Timo Nolle,et al.  Learning of Process Representations Using Recurrent Neural Networks , 2021, CAiSE.

[42]  Josep Carmona,et al.  A Discounted Cost Function for Fast Alignments of Business Processes , 2021, BPM.

[43]  Max Mühlhäuser,et al.  Case2vec: Advances in Representation Learning for Business Processes , 2020, ICPM Workshops.

[44]  Artem Polyvyanyy,et al.  A Spectrum of Entropy-Based Precision and Recall Measurements Between Partially Matching Designed and Observed Processes , 2020, ICSOC.

[45]  Sylvio Barbon Junior,et al.  Evaluating Trace Encoding Methods in Process Mining , 2020, DataMod@CIKM.

[46]  Jochen De Weerdt,et al.  Supervised Conformance Checking Using Recurrent Neural Network Classifiers , 2020, ICPM Workshops.

[47]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[48]  Boudewijn F. van Dongen,et al.  Replaying history on process models for conformance checking and performance analysis , 2012, WIREs Data Mining Knowl. Discov..