Statistical Model for Random Telegraph Noise in Flash Memories

This paper presents a new physics-based statistical model for random telegraph noise in Flash memories. From the probabilistic superposition of elementary Markov processes describing the trapping/detrapping events taking place in the cell tunnel oxide, the model can explain the main features of the random telegraph noise threshold-voltage instability. The results on the statistical distribution of the threshold-voltage difference between two subsequent read accesses show good agreement between measurements and model predictions, even considering the time drift of the distribution tails. Moreover, the model gives a detailed spectroscopic analysis of the oxide defects responsible for the random telegraph noise, allowing a spatial and energetic localization of the traps involved in the threshold-voltage instability process.

[1]  G. Jung,et al.  Random telegraph noise analysis in time domain , 2000 .

[2]  A. Visconti,et al.  Defects spectroscopy in SiO2 by statistical random telegraph noise analysis , 2006, 2006 International Electron Devices Meeting.

[3]  A. Ghetti,et al.  A 65nm NOR flash technology with 0.042/spl mu/m/sup 2/ cell size for high performance multilevel application , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[4]  T. Ma,et al.  Channel length dependence of random telegraph signal in sub-micron MOSFET's , 1994, IEEE Electron Device Letters.

[5]  C.M. Compagnoni,et al.  Statistical Investigation of Random Telegraph Noise ID Instabilities in Flash Cells at Different Initial Trap-filling Conditions , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[6]  Asen Asenov,et al.  Random telegraph signal amplitudes in sub 100 nm (decanano) MOSFETs: a 3D 'Atomistic' simulation study , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[7]  Andrew R. Brown,et al.  RTS amplitudes in decananometer MOSFETs: 3-D simulation study , 2003 .

[8]  Andrea L. Lacaita,et al.  Modeling of SILC based on electron and hole tunneling. II. Steady-state , 2000 .

[9]  P.K. Ko,et al.  Random telegraph noise of deep-submicrometer MOSFETs , 1990, IEEE Electron Device Letters.

[10]  Andrea L. Lacaita,et al.  Modeling of SILC Based on Electron and Hole Tunneling — Part I : Transient Effects , 2000 .

[11]  E. Worley,et al.  The gate bias and geometry dependence of random telegraph signal amplitudes [MOSFET] , 1997, IEEE Electron Device Letters.

[12]  S. Machlup,et al.  Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal , 1954 .

[13]  K. Otsuga,et al.  The Impact of Random Telegraph Signals on the Scaling of Multilevel Flash Memories , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[14]  R. Howard,et al.  Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1 f ?) Noise , 1984 .

[15]  Andrea L. Lacaita,et al.  Modeling of SILC based on electron and hole tunneling. I. Transient effects , 2000 .

[16]  A. Kotabe,et al.  Anomalously Large Threshold Voltage Fluctuation by Complex Random Telegraph Signal in Floating Gate Flash Memory , 2006, 2006 International Electron Devices Meeting.

[17]  A. Theuwissen,et al.  Random Telegraph Signal in CMOS Image Sensor Pixels , 2006, 2006 International Electron Devices Meeting.

[18]  Andrea L. Lacaita,et al.  Modeling of SILC Based on Electron and Hole Tunneling — Part II : Steady-State , 2000 .

[19]  J. A. López-Villanueva,et al.  Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures , 1997 .

[20]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .