Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity

[1]  C. Costa-Neto,et al.  Recent updates on GPCR biased agonism. , 2016, Pharmacological research.

[2]  A. J. Venkatakrishnan,et al.  Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region , 2016, Nature.

[3]  O. Lichtarge,et al.  Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation , 2016, Proceedings of the National Academy of Sciences.

[4]  S. Grzesiek,et al.  Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor , 2016, Nature.

[5]  L. Bohn,et al.  Biased Agonism: An Emerging Paradigm in GPCR Drug Discovery , 2016 .

[6]  D. Devost,et al.  Cellular and subcellular context determine outputs from signaling biosensors. , 2016, Methods in cell biology.

[7]  Y. Liu,et al.  Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. , 2015, The Biochemical journal.

[8]  A. J. Venkatakrishnan,et al.  Universal allosteric mechanism for Gα activation by GPCRs , 2015, Nature.

[9]  T. Schwartz,et al.  Biased Gs Versus Gq Proteins and β-Arrestin Signaling in the NK1 Receptor Determined by Interactions in the Water Hydrogen Bond Network* , 2015, The Journal of Biological Chemistry.

[10]  Stephen M. Husbands,et al.  Structural insights into μ-opioid receptor activation , 2015, Nature.

[11]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[12]  Angela D. Wilkins,et al.  Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor , 2015, Proceedings of the National Academy of Sciences.

[13]  Steffen Wolf,et al.  Sequence, Structure and Ligand Binding Evolution of Rhodopsin-Like G Protein-Coupled Receptors: A Crystal Structure-Based Phylogenetic Analysis , 2015, PloS one.

[14]  Olivier Lichtarge,et al.  Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients. , 2015, Cancer research.

[15]  Olivier Lichtarge,et al.  Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer. , 2015, Cancer research.

[16]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[17]  Angela D. Wilkins,et al.  Determinants of Endogenous Ligand Specificity Divergence among Metabotropic Glutamate Receptors* , 2014, The Journal of Biological Chemistry.

[18]  Thomas O. McDonald,et al.  Wee-1 Kinase Inhibition Overcomes Cisplatin Resistance Associated with High-Risk TP53 Mutations in Head and Neck Cancer through Mitotic Arrest Followed by Senescence , 2014, Molecular Cancer Therapeutics.

[19]  A. Shukla,et al.  Emerging structural insights into biased GPCR signaling. , 2014, Trends in biochemical sciences.

[20]  O. Lichtarge,et al.  A formal perturbation equation between genotype and phenotype determines the Evolutionary Action of protein-coding variations on fitness , 2014, Genome research.

[21]  Helmut Grubmüller,et al.  Position of transmembrane helix 6 determines receptor G protein coupling specificity. , 2014, Journal of the American Chemical Society.

[22]  J. Hardelin,et al.  Biased signaling through G‐protein‐coupled PROKR2 receptors harboring missense mutations , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  Benjamin G Tehan,et al.  Unifying family A GPCR theories of activation. , 2014, Pharmacology & therapeutics.

[24]  Arthur Christopoulos,et al.  Quantification of Ligand Bias for Clinically Relevant β2-Adrenergic Receptor Ligands: Implications for Drug Taxonomy , 2014, Molecular Pharmacology.

[25]  J. Benovic,et al.  Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein , 2013, Proceedings of the National Academy of Sciences.

[26]  Angela D. Wilkins,et al.  Accounting for epistatic interactions improves the functional analysis of protein structures , 2013, Bioinform..

[27]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[28]  Arthur Christopoulos,et al.  Signalling bias in new drug discovery: detection, quantification and therapeutic impact , 2012, Nature Reviews Drug Discovery.

[29]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[30]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[31]  J. Wess,et al.  Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor , 2012, Molecular Pharmacology.

[32]  Michel Bouvier,et al.  Restructuring G-Protein- Coupled Receptor Activation , 2012, Cell.

[33]  B. Kobilka,et al.  Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human β2 adrenergic receptor. , 2012, Structure.

[34]  Angela D. Wilkins,et al.  The use of evolutionary patterns in protein annotation. , 2012, Current opinion in structural biology.

[35]  X. Deupí,et al.  Conserved activation pathways in G-protein-coupled receptors. , 2012, Biochemical Society transactions.

[36]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[37]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[38]  R. Lefkowitz,et al.  Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. , 2011, Trends in biochemical sciences.

[39]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[40]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[41]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[42]  Michel Bouvier,et al.  Multiplexing of multicolor bioluminescence resonance energy transfer. , 2010, Biophysical journal.

[43]  Thomas M. Frimurer,et al.  Conserved Water-mediated Hydrogen Bond Network between TM-I, -II, -VI, and -VII in 7TM Receptor Activation* , 2010, The Journal of Biological Chemistry.

[44]  Olivier Lichtarge,et al.  Evolution-guided discovery and recoding of allosteric pathway specificity determinants in psychoactive bioamine receptors , 2010, Proceedings of the National Academy of Sciences.

[45]  S. Erdin,et al.  Evolutionary trace annotation of protein function in the structural proteome. , 2010, Journal of molecular biology.

[46]  L. Pardo,et al.  Ligand-specific regulation of the extracellular surface of a G protein coupled receptor , 2009, Nature.

[47]  P. Labute proteins STRUCTURE O FUNCTION O BIOINFORMATICS Protonate3D: Assignment of ionization , 2013 .

[48]  M. Bouvier,et al.  Conformational Rearrangements and Signaling Cascades Involved in Ligand-Biased Mitogen-Activated Protein Kinase Signaling through the β1-Adrenergic Receptor , 2008, Molecular Pharmacology.

[49]  Nagarajan Vaidehi,et al.  Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. , 2008, Biophysical journal.

[50]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[51]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[52]  M. Bouvier,et al.  The evasive nature of drug efficacy: implications for drug discovery. , 2007, Trends in pharmacological sciences.

[53]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[54]  S. Milano,et al.  Regulation of receptor trafficking by GRKs and arrestins. , 2007, Annual review of physiology.

[55]  Leonardo Pardo,et al.  The Role of Internal Water Molecules in the Structure and Function of the Rhodopsin Family of G Protein‐Coupled Receptors , 2007, Chembiochem : a European journal of chemical biology.

[56]  Olivier Lichtarge,et al.  β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor* , 2006, Journal of Biological Chemistry.

[57]  Olivier Lichtarge,et al.  beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. , 2006, The Journal of biological chemistry.

[58]  Michel Bouvier,et al.  Real-time monitoring of receptor and G-protein interactions in living cells , 2005, Nature Methods.

[59]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[60]  O. Lichtarge,et al.  A family of evolution-entropy hybrid methods for ranking protein residues by importance. , 2004, Journal of molecular biology.

[61]  Pascale G. Charest,et al.  β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Pascale G. Charest,et al.  Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Harel Weinstein,et al.  Conserved Helix 7 Tyrosine Acts as a Multistate Conformational Switch in the 5HT2C Receptor , 2002, The Journal of Biological Chemistry.

[64]  E. Lakatta,et al.  β1/β2-Adrenergic Receptor Heterodimerization Regulates β2-Adrenergic Receptor Internalization and ERK Signaling Efficacy* , 2002, The Journal of Biological Chemistry.

[65]  E. Lakatta,et al.  Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. , 2002, The Journal of biological chemistry.

[66]  M. Caron,et al.  Association of β-Arrestin with G Protein-coupled Receptors during Clathrin-mediated Endocytosis Dictates the Profile of Receptor Resensitization* , 1999, The Journal of Biological Chemistry.

[67]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[68]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[69]  M. Caron,et al.  The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. , 1995, Biochemistry.

[70]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[71]  T. S. Kobilka,et al.  Enhancement of membrane insertion and function in a type IIIb membrane protein following introduction of a cleavable signal peptide. , 1992, The Journal of biological chemistry.