Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase.

Drosophila telomeres do not have arrays of simple telomerase-generated G-rich repeats. Instead, Drosophila maintains its telomeres by occasional transposition of specific non-long terminal repeat (non-LTR) retrotransposons to chromosome ends. The genus Drosophila provides a superb model system for comparative telomere analysis. Here we present an evolutionary study of Drosophila telomeric elements to ascertain the significance of telomeric retrotransposons (TRs) in the maintenance of Drosophila telomeres. PCR and in silico surveys in the sibling species of Drosophila melanogaster and in more distantly related species show that multiple TRs maintain telomeres in Drosophila. In addition to TRs with two open reading frames (ORFs) capable of autonomous transposition, there are deleted telomeric retrotransposons that have lost their ORF2, which we refer to as half telomeric-retrotransposons (HTRs). The phylogenetic relationship among these telomeric elements is congruent with the phylogeny of the species, suggesting that they have been vertically inherited from a common ancestor. Our results suggest that an existing non-LTR retrotransposon was recruited to perform the cellular function of telomere maintenance.

[1]  J. V. Moran,et al.  Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres , 2007, Nature.

[2]  P. D. de Jong,et al.  BAC clones generated from sheared DNA. , 2007, Genomics.

[3]  Donald G. Gilbert,et al.  DroSpeGe: rapid access database for new Drosophila species genomes , 2007, Nucleic Acids Res..

[4]  H. Robertson,et al.  Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera. , 2006, Genome research.

[5]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[6]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[7]  K. Kojima,et al.  Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). , 2006, Gene.

[8]  Takumi Matsumoto,et al.  Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori , 2005, Chromosome Research.

[9]  M. Pardue,et al.  Two retrotransposons maintain telomeres in Drosophila , 2005, Chromosome Research.

[10]  J. Abad,et al.  Genomic and cytological analysis of the Y chromosome of Drosophila melanogaster: telomere-derived sequences at internal regions , 2004, Chromosoma.

[11]  Kazutoyo Osoegawa,et al.  TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. , 2004, Molecular biology and evolution.

[12]  Kazutoyo Osoegawa,et al.  Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. , 2004, Molecular biology and evolution.

[13]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[14]  E. Trifonov Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation , 2004 .

[15]  M. Pardue,et al.  Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. , 2003, Annual review of genetics.

[16]  M. Pardue,et al.  HeT-A elements in Drosophila virilis: Retrotransposon telomeres are conserved across the Drosophila genus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Takashi Yamada,et al.  Retrotransposon-mediated restoration of Chlorella telomeres: accumulation of Zepp retrotransposons at termini of newly formed minichromosomes. , 2003, Nucleic acids research.

[18]  A. Athanasiadis,et al.  Intracellular Targeting of Gag Proteins of the Drosophila Telomeric Retrotransposons , 2003, Journal of Virology.

[19]  M. Pardue,et al.  Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[21]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[22]  M. Pardue,et al.  Coevolution of the telomeric retrotransposons across Drosophila species. , 2002, Genetics.

[23]  M. Perutz,et al.  Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[25]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[26]  C. Rudin,et al.  Transcriptional activation of short interspersed elements by DNA‐damaging agents , 2001, Genes, chromosomes & cancer.

[27]  T. Kahn,et al.  Attachment of HeT-A Sequences to Chromosomal Termini in Drosophila melanogaster May Occur by Different Mechanisms , 2000, Molecular and Cellular Biology.

[28]  E. Lozovskaya,et al.  A telomeric satellite in Drosophila virilis and its sibling species , 2000, Chromosoma.

[29]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[30]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[31]  J. Abad,et al.  HeT-A telomere-specific retrotransposons in the centric heterochromatin of Drosophila melanogaster chromosome 3 , 1999, Molecular and General Genetics MGG.

[32]  J. Abad,et al.  Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. , 1999, Nucleic acids research.

[33]  J. Abad,et al.  The 3′ non‐coding region of the Drosophila melanogaster HeT‐A telomeric retrotransposon contains sequences with propensity to form G‐quadruplex DNA , 1999, FEBS letters.

[34]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[35]  M. Pardue,et al.  Telomeres and telomerase: more than the end of the line , 1999, Chromosoma.

[36]  M. Pardue,et al.  Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Lowenhaupt,et al.  Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. , 1998, Genetics.

[38]  J. Abad,et al.  Organization of DNA sequences near the centromere of the Drosophila melanogaster Y chromosome , 1998, Chromosoma.

[39]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[40]  K. Lowenhaupt,et al.  Drosophila telomeres: new views on chromosome evolution. , 1996, Trends in genetics : TIG.

[41]  R. Levis,et al.  Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Levis,et al.  Transposons in place of telomeric repeats at a Drosophila telomere , 1993, Cell.

[43]  M. Pardue,et al.  The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. , 1993, Genetics.

[44]  H. Biessmann,et al.  Frequent transpositions of Drosophila melanogaster HeT‐A transposable elements to receding chromosome ends. , 1992, The EMBO journal.

[45]  R. Levis,et al.  HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster , 1992, Molecular and cellular biology.

[46]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[47]  H. Biessmann,et al.  Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila , 1990, Cell.

[48]  M. Pardue,et al.  A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Pardue,et al.  Telomere regions in drosophila share complex DNA sequences with pericentric heterochromatin , 1983, Cell.

[50]  V. Pirrotta,et al.  Microdissection and cloning of the white locus and the 3B1‐3C2 region of the Drosophila X chromosome , 1983, The EMBO journal.

[51]  G M Rubin,et al.  Isolation of a telomeric DNA sequence from Drosophila melanogaster. , 1978, Cold Spring Harbor symposia on quantitative biology.