Interval Computations: Introduction, Uses, and Resources

Interval analysis is a broad field in which rigorous mathematics is associated with with scientific computing. A number of researchers worldwide have produced a voluminous literature on the subject. This article introduces interval arithmetic and its interaction with established mathematical theory. The article provides pointers to traditional literature collections, as well as electronic resources. Some successful scientific and engineering applications are listed. 1 What is Interval Arithmetic, and Why is it Considered? Interval arithmetic is an arithmetic defined on sets of intervals, rather than sets of real numbers. A form of interval arithmetic perhaps first appeared in 1924 and 1931 in [8, 104], then later in [98]. Modern development of interval arithmetic began with R. E. Moore’s dissertation [64]. Since then, thousands of research articles and numerous books have appeared on the subject. Periodic conferences, as well as special meetings, are held on the subject. There is an increasing amount of software support for interval computations, and more resources concerning interval computations are becoming available through the Internet. In this paper, boldface will denote intervals, lower case will denote scalar quantities, and upper case will denote vectors and matrices. Brackets “[·]” will delimit intervals while parentheses “(·)” will delimit vectors and matrices. Underscores will denote lower bounds of intervals and overscores will denote upper bounds of intervals. Corresponding lower case letters will denote components of vectors. The set of real intervals will be denoted by IR. Interval vectors will also be called boxes.

[1]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[2]  H. Spreuer,et al.  On the Existence and the Verified Determination of Homoclinic and Heteroclinic Orbits of the Origin for the Lorenz Equations , 1993 .

[3]  M. Nakao Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .

[4]  Willard L. Miranker,et al.  A new approach to scientific computation , 1983 .

[5]  R. Baker Kearfott Empirical Evaluation of Innovations in Interval Branch and Bound Algorithms for Nonlinear Systems , 1997, SIAM J. Sci. Comput..

[6]  H. Bauch Intervallmathematik : Theorie und Anwendungen , 1987 .

[7]  T. Sederberg,et al.  Comparison of three curve intersection algorithms , 1986 .

[8]  Weldon A. Lodwick,et al.  Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis , 1990, Int. J. Geogr. Inf. Sci..

[9]  Eero Hyvönen,et al.  Constraint Reasoning Based on Interval Arithmetic , 1989, IJCAI.

[10]  Oscar E. Lanford,et al.  Computer-assisted proofs in analysis , 1984 .

[11]  Tamara Kashevarova,et al.  UniCalc, a Novel Approach to Solving Systems of Algebraic Equations , 1993 .

[12]  Weldon A. Lodwick,et al.  Constraint propagation, relational arithmetic in AI systems and mathematical programs , 1990 .

[13]  Kenneth R. Meyer,et al.  Computer aided proofs in analysis , 1991 .

[14]  Ulrich W. Kulisch,et al.  Numerical Toolbox for Verified Computing I , 1993 .

[15]  Michael Plum Existence proofs in combination with error bounds for approximate solutions of weakly nonlinear second-order elliptic boundary value problems , 1991 .

[16]  J. D. Seader,et al.  Application of interval Newton's method to chemical engineering problems , 1995, Reliab. Comput..

[17]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[18]  William J. Kennedy,et al.  Self-Validating Computations of Probabilities for Selected Central and Noncentral Univariate Probability Functions , 1994 .

[19]  Marian Mrozek Rigorous numerics of chaotic dynamical systems , 1995 .

[20]  J. Hass,et al.  Double bubbles minimize , 2000, math/0003157.

[21]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[22]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[23]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[24]  Charles Fefferman,et al.  Interval Arithmetic in Quantum Mechanics , 1996 .

[25]  A. Neumaier,et al.  Rigorous chaos verification in discrete dynamical systems , 1993 .

[26]  Hartmut Schwandt An Interval Arithmetic Approach for the Construction of an Almost Globally Convergent Method for the Solution of the Nonlinear Poisson Equation on the Unit Square , 1984 .

[27]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[28]  Jiri Rohn An algorithm for checking stability of symmetric interval matrices , 1996, IEEE Trans. Autom. Control..

[29]  Rage,et al.  Rigorous verification of chaos in a molecular model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Kohshi Okumura,et al.  A method for solving complex linear equation of AC network by interval computation , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[31]  Sudhir P. Mudur,et al.  Interval Methods for Processing Geometric Objects , 1984, IEEE Computer Graphics and Applications.

[32]  Max E. Jerrell Applications of Interval Computations to Regional Economic Input-Output Models , 1996 .

[33]  Ladislav J. Kohout,et al.  Interval-Valued Inference in Medical Knowledge-Based System CLINAID , 1993 .

[34]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[35]  Ralph Baker Kearfott,et al.  Rigorous Computation of Surface Patch Intersection Curves , 1993 .

[36]  George F. Corliss Industrial Applications of Interval Techniques , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[37]  A. Neumaier Interval methods for systems of equations , 1990 .

[38]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[39]  A. Neumaier The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions , 1993 .

[40]  Peter Wittwer,et al.  Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..

[41]  W. Bandler,et al.  Fuzzy Interval Inference Utilizing the Checklist Paradigm and BK-Relational Products , 1996 .

[42]  Gregory D. Hager Solving Large Systems of Nonlinear Constraints with Application to Data Modeling , 1994 .

[43]  R. Lohner Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .

[44]  Sudhir P. Mudur,et al.  Subdivision Techniques for Processing Geometric Objects , 1985 .

[45]  Bruno Lang,et al.  Newton's constant of gravitation and verified numerical quadrature , 1996, Reliab. Comput..

[46]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[47]  R. Young The algebra of many-valued quantities , 1931 .

[48]  Beate Gross Verification of Asymptotic Stability for Interval Matrices and Applications in Control Theory , 1993 .

[49]  O. Lanford A shorter proof of the existence of the Feigenbaum fixed point , 1984 .

[50]  Christian Ullrich Contributions to computer arithmetic and self-validating numerical methods , 1990 .

[51]  Ulrike Storck,et al.  Numerical Integration in Two Dimensions with Automatic Result Verification , 1993 .

[52]  Hartmut Schwandt An interval arithmetic method for the solution of nonlinear systems of equations on a vector computer , 1987, Parallel Comput..

[53]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[54]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[55]  L. B. Rall,et al.  Adaptive, self-validating numerical quadrature , 1987 .

[56]  J. C. Burkill Functions of Intervals , 1924 .

[57]  Ulrich W. Kulisch,et al.  Computerarithmetic : scientific computation and programming languages , 1987 .

[58]  C. P. Ullrich,et al.  Extending LINPACK by verification routines for linear systems , 1995 .

[59]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[60]  G. Corliss Guaranteed Error Bounds for Ordinary Differential Equations , 1994 .

[61]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[62]  渡部 善隆 Guaranteed Error Bounds for Finite Element Solutions of the Stokes Equations , 1996 .

[63]  Eric Walter,et al.  Quality Improvement via Optimization of Tolerance Intervals During the Design Stage , 1996 .

[64]  Takashi Maekawa Robust computational methods for shape interrogation , 1993 .

[65]  Willard L. Miranker,et al.  Self-Validating Numerics for Function Space Problems , 1984 .

[66]  B A Cipra Computer-Drawn Pictures Stalk the Wild Trajectory: Even simple systems can exhibit chaotic behavior, but tracking them mathematically can be tricky; computer-generated pictures can help in the pursuit. , 1988, Science.

[67]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[68]  Hartmut Schwandt,et al.  The Solution of Nonlinear Elliptic Dirichlet Problems on Rectangles by Almost Globally Convergent Interval Methods , 1985 .

[69]  Carol Ann Schnepper,et al.  Large-grained parallelism in equation-based flowsheeting using interval Newton/generalized bisection techniques , 1992 .

[70]  Hermann Schichl,et al.  GLOPT { A Program for Constrained Global Optimization , 1997 .

[71]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[72]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[73]  Ramon E. Moore Interval arithmetic and automatic error analysis in digital computing , 1963 .

[74]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[75]  Rainer Kelch Ein adaptives Verfahren zur Numerischen Quadratur mit automatischer Ergebnisverifikation , 1989 .

[76]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[77]  R. Broadwater,et al.  The application of interval mathematics to utility economic analysis , 1990 .