The resonant interaction between anions or vacancies in ZnON semiconductors and their effects on thin film device properties

[1]  Jae Kyeong Jeong,et al.  Hydrogen Bistability as the Origin of Photo‐Bias‐Thermal Instabilities in Amorphous Oxide Semiconductors , 2015 .

[2]  Yong-Sung Kim,et al.  Undercoordinated indium as an intrinsic electron-trap center in amorphous InGaZnO4 , 2014 .

[3]  J. Robertson,et al.  Light induced instability mechanism in amorphous InGaZn oxide semiconductors , 2014 .

[4]  C. H. Park,et al.  Bistability of Hydrogen in ZnO: Origin of Doping Limit and Persistent Photoconductivity , 2014, Scientific Reports.

[5]  Dunjun Chen,et al.  Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer , 2013 .

[6]  Seungwu Han,et al.  Cation disorder as the major electron scattering source in crystalline InGaZnO , 2013 .

[7]  Yong-Sung Kim,et al.  Role of lone-pair electrons in Sb-doped amorphous InGaZnO4: Suppression of the hole-induced lattice instability , 2013 .

[8]  Kinam Kim,et al.  Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors , 2013, Scientific Reports.

[9]  K. Chang,et al.  Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors , 2013 .

[10]  F. Utsuno,et al.  High-Performance Thin Film Transistor with Amorphous In2O3–SnO2–ZnO Channel Layer , 2012 .

[11]  Yong-Sung Kim,et al.  Instability of amorphous oxide semiconductors via carrier‐mediated structural transition between disorder and peroxide state , 2011, 1112.4914.

[12]  B. Ryu,et al.  Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors , 2011 .

[13]  Min-Chen Chen,et al.  Device characteristics of amorphous indium gallium zinc oxide thin film transistors with ammonia incorporation , 2011 .

[14]  Cheol Seong Hwang,et al.  Role of ZrO2 incorporation in the suppression of negative bias illumination- induced instability in Zn-Sn-O thin film transistors , 2011 .

[15]  Jae Kyeong Jeong,et al.  Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors , 2011 .

[16]  Shin-Ping Huang,et al.  Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors , 2010 .

[17]  B. Ryu,et al.  O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors , 2010, 1006.4913.

[18]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[19]  C. H. Park,et al.  Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. , 2008, Physical review letters.

[20]  I. Tanaka,et al.  Defect energetics in ZnO: A hybrid Hartree-Fock density functional study , 2008 .

[21]  Ying Dai,et al.  Atomic geometry and electronic structure of defects in Zn3N2 , 2008 .

[22]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[23]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[24]  D. Middlemiss,et al.  A hybrid Hartree?Fock density functional theory study of LixNi1?xO , 2004 .

[25]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[26]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[27]  M. Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001, cond-mat/0107229.

[28]  M. Jansen,et al.  Inorganic yellow-red pigments without toxic metals , 2000, Nature.

[29]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[35]  H. Wriedt The N−Zn (Nitrogen-Zinc) system , 1988 .

[36]  Brian Cobb,et al.  Charge transport in amorphous InGaZnO thin-film transistors , 2012 .

[37]  S. Dudarev Electron-energy-loss spectra and the structural stability of nickel oxide : An LSDA 1 U study , 1997 .