Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts: I. Kinetic and thermodynamic studies

[1]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[2]  Kamelia Boodhoo,et al.  Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts: II. Performance of immobilised catalysts in a continuous spinning disc reactor , 2007 .

[3]  J. Clark,et al.  Classical cationic polymerization of styrene in a spinning disc reactor using silica‐supported BF3 catalyst , 2006 .

[4]  Colin Grant,et al.  7th World Congress of Chemical Engineering: A Review , 2005 .

[5]  G. Neri,et al.  Isomerization of α-pinene oxide to campholenic aldehyde over Lewis acids supported on silica and titania nanoparticles , 2005 .

[6]  J. Clark,et al.  Rearrangement of α-pinene oxide using a surface catalysed spinning disc reactor (SDR) , 2004 .

[7]  James H. Clark,et al.  Solid acids for green chemistry. , 2002, Accounts of chemical research.

[8]  Kamelia Boodhoo,et al.  Process intensification: spinning disk reactor for styrene polymerisation , 2000 .

[9]  K. Wilson,et al.  Novel heterogeneous zinc triflate catalysts for the rearrangement of α-pinene oxide , 1999 .

[10]  Colin Ramshaw,et al.  Process intensification : heat and mass transfer characteristics of liquid films on rotating discs , 1999 .

[11]  J. Clark,et al.  Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids , 1998 .

[12]  J. C. van der Waal,et al.  Application of zeolite titanium Beta in the rearrangement of α-pinene oxide to campholenic aldehyde , 1998 .

[13]  W. Hölderich,et al.  The use of zeolites in the synthesis of fine and intermediate chemicals , 1997 .

[14]  C. Ramshaw,et al.  Process intensification: Heat transfer characteristics of tailored rotating surfaces , 1994 .

[15]  K. Arata,et al.  ISOMERIZATION OF α-PlNENE OXIDE OVER SOLID ACIDS AND BASES , 1979 .

[16]  Tran Phuc Thinh,et al.  Estimation of standard heats of formation ΔH *fT, standard entropies of formation ΔS *fT, standard free energies of formation ΔF *fT and absolute entropies S *fT of hydrocarbons from group contributions: An accurate approach , 1976 .

[17]  R. S. Ramalho,et al.  Estimation of Ideal Gas Heat Capacities of Hydrocarbons from Group Contribution Techniques. New and Accurate Approach , 1971 .

[18]  John B. Lewis,et al.  Reaction of α-Pinene Oxide with Zinc Bromide and Rearrangement of 2,2,3-Trimethyl-3-cyclopentene Products Derived Therefrom1 , 1965 .

[19]  L. Doraiswamy,et al.  Estimation of Heats of Formation of Organic Compounds , 1965 .

[20]  Kamelia Boodhoo,et al.  Process intensification: spinning disc reactor for condensation polymerisation , 2000 .

[21]  Reinhard Koehler,et al.  Shear degradation and deformation of polysaccharides in thin liquid film flow on a rotating disk. , 2000 .

[22]  W. Hölderich,et al.  Selective isomerization of α-pinene oxide with heterogeneous catalysts , 1997 .

[23]  L. Gladden,et al.  Transport heterogeneity in porous pellets—II. NMR imaging studies under transient and steady-state conditions , 1995 .

[24]  W. Hölderich New Reactions in Various Fields and Production of Specialty Chemicals , 1993 .

[25]  Schwegler,et al.  The isomerization of α‐pinene oxide with Brønsted and Lewis acids , 1992 .

[26]  N. Brauner,et al.  Modeling of wavy flow in inclined thin films , 1983 .

[27]  G. Bond,et al.  Heterogeneous Catalysis: Principles and Applications , 1974 .

[28]  Irving M. Klotz,et al.  Chemical Thermodynamics: Basic Theory and Methods , 1972 .

[29]  J. M. Thomas,et al.  Introduction to the principles of heterogeneous catalysis , 1967 .