Optimal Signaling for Secure Communications Over Gaussian MIMO Wiretap Channels

Optimal signaling over the Gaussian multiple-input multiple-output wire-tap channel is studied under the total transmit power constraint. A closed-form solution for an optimal transmit covariance matrix is obtained when the channel is strictly degraded. In combination with the rank-1 solution, this provides the complete characterization of the optimal covariance for the case of two transmit antennas. The cases of weak eavesdropper and high SNR are considered. It is shown that the optimal covariance does not converge to a scaled identity in the high-SNR regime. Necessary optimality conditions and a tight upper bound on the rank of an optimal covariance matrix are established for the general case, along with a lower bound to the secrecy capacity, which is tight in a number of scenarios.

[1]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[2]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[3]  Jan Brinkhuis,et al.  Optimization Insights and Applications , 2010 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Roy D. Yates,et al.  Secret Communication via Multi-antenna Transmission , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[6]  David W. Lewis,et al.  Matrix theory , 1991 .

[7]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2006, 2007 IEEE International Symposium on Information Theory.

[8]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[9]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[10]  Helmut Bölcskei,et al.  Space-Time Wireless Systems: From Array Processing to MIMO Communications , 2008 .

[11]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[12]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[13]  Nan Liu,et al.  Towards the Secrecy Capacity of the Gaussian MIMO Wire-Tap Channel: The 2-2-1 Channel , 2007, IEEE Transactions on Information Theory.

[14]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[15]  Charalambos D. Charalambous,et al.  On optimal signaling over secure MIMO channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[16]  Charalambos D. Charalambous,et al.  Further results on optimal signaling over secure MIMO channels , 2013, 2013 IEEE International Symposium on Information Theory.

[17]  Ruoheng Liu,et al.  Securing Wireless Communications at the Physical Layer , 2014 .

[18]  Athina P. Petropulu,et al.  On beamforming solution for secrecy capacity of MIMO wiretap channels , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[19]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2008, ISIT.

[20]  Athina P. Petropulu,et al.  Transmitter Optimization for Achieving Secrecy Capacity in Gaussian MIMO Wiretap Channels , 2009, ArXiv.

[21]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[22]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[23]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[24]  Gregory W. Wornell,et al.  Secure Broadcasting Over Fading Channels , 2008, IEEE Transactions on Information Theory.