Recent progress on liquid metals and their applications

Abstract Gallium-based liquid metals show excellent thermal and electrical conductivities with low viscosity and non-toxicity. Their melting points are either lower than or close to room temperature, which endows them with additional advantages in comparison to the solid metals; for example, they are flexible, stretchable and reformable at room temperature. Recently, great improvements have been achieved in developing multifunctional devices by using Ga-based liquid metals, including actuators, flexible circuits, bio-devices and self-healing superconductors. Here, we review recent research progress on Gallium-based liquid metals, especially on the applications aspects. These applications are mainly based on the unique properties of liquid metals, including low melting point, flexible and stretchable mechanical properties, excellent electrical and thermal conductivities and biocompatibility.

[1]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[2]  Yu Lin Zhong,et al.  Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. , 2015, ACS nano.

[3]  M. Dickey,et al.  A frequency shifting liquid metal antenna with pressure responsiveness , 2011 .

[4]  Yvonne Neudorf Electronic Materials And Processes Handbook , 2016 .

[5]  M. Laing Melting Point, Density, and Reactivity of Metals , 2001 .

[6]  K. Narh,et al.  The effect of liquid gallium on the strengths of stainless steel and thermoplastics , 1998 .

[7]  Omid Kavehei,et al.  A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides , 2017, Science.

[8]  Yong-gang Lv,et al.  A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid , 2006 .

[9]  Arnan Mitchell,et al.  Ionic imbalance induced self-propulsion of liquid metals , 2016, Nature Communications.

[10]  K. Khoshmanesh,et al.  Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator. , 2017, Lab on a chip.

[11]  G. Evans,et al.  “Strategic sequences” in adipose‐derived stem cell nerve regeneration , 2014, Microsurgery.

[12]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[15]  Wei Zhang,et al.  Liquid Metal Actuator for Inducing Chaotic Advection , 2014 .

[16]  Silvestro Micera,et al.  Electronic dura mater for long-term multimodal neural interfaces , 2015, Science.

[17]  D. LaMontagne,et al.  Polarography with a dropping gallium electrode. , 1954, Science.

[18]  Zhenan Bao,et al.  Flexible electronics: stretching our imagination. , 2008, Nature nanotechnology.

[19]  M. Dickey Stretchable and Soft Electronics using Liquid Metals , 2017, Advanced materials.

[20]  Nancy J. Shatto Rn Msn Cnor,et al.  Pathophysiology: The Biologic Basis for Disease in Adults and Children , 1996 .

[21]  Ishan D. Joshipura,et al.  Methods to pattern liquid metals , 2015 .

[22]  Guy de Villers Sens , 2019, Vocabulaire des histoires de vie et de la recherche biographique.

[23]  Jason Heikenfeld,et al.  Reconfigurable liquid metal circuits by Laplace pressure shaping , 2012 .

[24]  Carmel Majidi,et al.  High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width , 2014, Advanced materials.

[25]  Zach DeVito,et al.  Opt , 2017 .

[26]  Tessa Gordon,et al.  Experimental strategies to promote functional recovery after peripheral nerve injuries , 2003, Journal of the peripheral nervous system : JPNS.

[27]  M. Dickey,et al.  Strain-controlled diffraction of light from stretchable liquid metal micro-components , 2013 .

[28]  B. Jeon,et al.  Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. , 2008, Biomaterials.

[29]  D. Avnir Chemically induced pulsations of interfaces: The mercury beating heart , 1989 .

[30]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[31]  Yong Hua,et al.  Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS) – a review , 2017 .

[32]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[33]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[34]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[35]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[36]  Michael D. Dickey,et al.  Liquid metal actuation by electrical control of interfacial tension , 2016 .

[37]  P. Surmann,et al.  Voltammetric analysis using a self-renewable non-mercury electrode , 2005, Analytical and bioanalytical chemistry.

[38]  Zhiyuan Yu,et al.  Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides , 2016 .

[39]  Arnan Mitchell,et al.  Electrochemically induced actuation of liquid metal marbles. , 2013, Nanoscale.

[40]  Xuan Wu,et al.  A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability. , 2016, Lab on a chip.

[41]  Arnan Mitchell,et al.  Liquid metal enabled microfluidics. , 2017, Lab on a chip.

[42]  Khashayar Khoshmanesh,et al.  Steering liquid metal flow in microchannels using low voltages. , 2015, Lab on a chip.

[43]  木村 淳 Electrodiagnosis in diseases of nerve and muscle : principles and practice , 1983 .

[44]  Khashayar Khoshmanesh,et al.  An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets. , 2016, ACS applied materials & interfaces.

[45]  Michael D. Dickey,et al.  Self‐Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics , 2013, Advanced materials.

[46]  Michael D. Dickey,et al.  Emerging Applications of Liquid Metals Featuring Surface Oxides , 2014, ACS applied materials & interfaces.

[47]  Chenjie Xu,et al.  Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. , 2009, Journal of the American Chemical Society.

[48]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[49]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[50]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[51]  K. Spells,et al.  The determination of the viscosity of liquid gallium over an extended nrange of temperature , 1936 .

[52]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[53]  Jing Liu,et al.  Heat-driven liquid metal cooling device for the thermal management of a computer chip , 2007 .

[54]  V. Dietz,et al.  The physiological basis of neurorehabilitation - locomotor training after spinal cord injury , 2013, Journal of NeuroEngineering and Rehabilitation.

[55]  James P. Wissman,et al.  Rapid Prototyping for Soft‐Matter Electronics , 2014 .

[56]  Mark E. Davis,et al.  Cyclodextrin-based pharmaceutics: past, present and future , 2004, Nature Reviews Drug Discovery.

[57]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[58]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[59]  Dong-Weon Lee,et al.  Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. , 2013, ACS applied materials & interfaces.

[60]  Nevill Mott,et al.  The Resistance of Liquid Metals , 1934 .

[61]  Prayoot Akkaraekthalin,et al.  Bandpass Filters using T-shape Stepped Impedance Resonators for Wide Harmonics Suppression and their Application for a Diplexer , 2011 .

[62]  Andrew G. Glen,et al.  APPL , 2001 .

[63]  D. S. Evans,et al.  Thermal analysis of Ga-In-Sn system , 1978 .

[64]  C. Kim,et al.  Characterization of liquid-metal Galinstan® for droplet applications , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[65]  G. Evans,et al.  Peripheral nerve injury: A review and approach to tissue engineered constructs , 2001, The Anatomical record.

[66]  Kourosh Kalantar-Zadeh,et al.  Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals , 2017, Nature Communications.

[67]  Kyle A. Williams,et al.  Towards electrically conductive, self-healing materials , 2007, Journal of The Royal Society Interface.

[68]  Sue E. Huether,et al.  Pathophysiology: The Biologic Basis for Disease in Adults and Children , 1990 .

[69]  A. Diebold,et al.  Oxide-Free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[70]  K. Robbie,et al.  Assembling the puzzle of superconducting elements: a review , 2004, cond-mat/0410302.

[71]  A. Höke,et al.  Advances in peripheral nerve regeneration , 2013, Nature Reviews Neurology.

[72]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[73]  Carmel Majidi,et al.  Soft Multifunctional Composites and Emulsions with Liquid Metals , 2017, Advanced materials.

[74]  C. Kim,et al.  Electrostatically actuated metal-droplet microswitches integrated on CMOS chip , 2006, Journal of Microelectromechanical Systems.

[75]  Jing Liu,et al.  Hybrid liquid metal–water cooling system for heat dissipation of high power density microdevices , 2010 .

[76]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[77]  Yosef Yarden,et al.  Roles for growth factors in cancer progression. , 2010, Physiology.

[78]  Yi Du,et al.  Nanodroplets for Stretchable Superconducting Circuits , 2016 .

[79]  Jing Liu,et al.  Manipulation of Liquid Metals on a Graphite Surface , 2016, Advanced materials.

[80]  Robert Langer,et al.  Near-infrared–actuated devices for remotely controlled drug delivery , 2014, Proceedings of the National Academy of Sciences.

[81]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[82]  Jing Liu,et al.  Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues , 2013, Scientific Reports.

[83]  S. Tang,et al.  Liquid metal enabled pump , 2014, Proceedings of the National Academy of Sciences.

[84]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[85]  D. Sameoto,et al.  Fabrication methods and applications of microstructured gallium based liquid metal alloys , 2016 .

[86]  K. Toh,et al.  Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles. , 2014, ACS nano.

[87]  S. Wolfe,et al.  Peripheral Nerve Injury and Repair , 2000, The Journal of the American Academy of Orthopaedic Surgeons.

[88]  C. Dodd The Electrical Resistance of Liquid Gallium in the Neighbourhood of its Melting Point , 1950 .

[89]  F. Barbier,et al.  Corrosion of martensitic and austenitic steels in liquid gallium , 1999 .

[90]  B. Berge,et al.  Electrowetting : a recent outbreak , 2001 .

[91]  Sungjoon Lim,et al.  Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). , 2015, Optics express.

[92]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.