Rechargeable magnesium battery: Current status and key challenges for the future

Abstract There is a tremendous need to have perennial and continuous access to cost-effective electricity generated from the intermittent energy sources (wind, solar, geothermal, hydropower, wave etc.). This will require development of inexpensive and efficient electrical energy storage (EES) devices such as stationary battery for uninterrupted electricity (power storage back up) and load leveling as well as grid energy storage systems [1–6]. Magnesium based secondary batteries are a viable ‘environmental friendly, non-toxic’ alternative compared to the immensely popular Li-ion systems owing to its high volumetric capacity (3833 mA h/cc for Mg vs. 2046 mA h/cc for Li) for stationary EES applications. Following the successful demonstration of a prototype magnesium cell capable of offering energy density ∼60 W h/kg in the early 2000, the last decade has witnessed tremendous amount of work dedicated to magnesium battery and its components. The present review is an earnest attempt to collect all of the comprehensive body of research performed in the literature hitherto to develop non-aqueous nucleophilic/non-nucleophilic liquid electrolytes, ionic liquid based polymer as well as solid/gel polymer electrolytes; intercalation/insertion/conversion type cathodes; metallic magnesium and their alloys/intermetallic/composites as anodes; and electronically conductive but chemically and electrochemically inert current collectors for magnesium battery. The limited electrochemical oxidative stability of current generation of electrolytes with inherently slow magnesium-ion diffusion in to electrodes as well as the inability of Mg2+ to reversibly cycle in all but a few materials systems impede the growth of high power and high energy density magnesium cells, analogous to Li-ion systems. Before the successful fabrication of a prototype magnesium battery, optimization of electrolyte performance, the realization of suitable intercalation/insertion cathodes and the identification of alternative alloys, intermetallics, composites and compounds as anodes are highly critical. Exploration of the compatibility of various battery parts including metallic current collectors with currently used organochloro electrolytes sheds light on the electrochemical corrosion of metals such as Cu, Al, stainless steel (SS) toward chlorinated Grignard’s salts warranting further investigation for identifying, electrically conducting and electrochemically inert current collectors. Results to date show the preferential selectivity of certain electronically conducting metallic and non-metallic current collectors for rechargeable magnesium batteries owing to its high anodic stability in the present electrolyte. Development of magnesium-ion battery therefore requires an interdisciplinary approach with a sound understanding of organometallic and inorganic chemistry, adequate knowledge of materials chemistry, materials science and engineering, as well as electrochemistry, and a comprehensive knowledge of metallic corrosion principles in basic/acidic electrolytic environments in order that a system with acceptable energy density (∼150–200 W h/kg) and operational voltage ∼2–3 V can be developed in the near future.

[1]  S. Ramesh,et al.  Structural, morphological, thermal, and conductivity studies of magnesium ion conducting P(VdF‐HFP)‐based solid polymer electrolytes with good prospects , 2010 .

[2]  N. Munichandraiah,et al.  Solid-state Mg/MnO2 cell employing a gel polymer electrolyte of magnesium triflate , 2000 .

[3]  N. Yoshimoto,et al.  A novel polymeric gel electrolyte systems containing magnesium salt with ionic liquid , 2005 .

[4]  P. Bruce,et al.  Multivalent cation intercalation , 1992 .

[5]  G. I. Sukhova,et al.  Surface film effect on the electrochemical behaviour of active metals , 1988 .

[6]  Yuyan Shao,et al.  Electrochemically stable cathode current collectors for rechargeable magnesium batteries , 2014 .

[7]  Petr Novák,et al.  Magnesium Insertion Electrodes for Rechargeable Nonaqueous Batteries — A Competitive Alternative to Lithium? , 1999 .

[8]  M. Egashira,et al.  Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries , 2010 .

[9]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[10]  C. Liebenow A novel type of magnesium ion conducting polymer electrolyte , 1998 .

[11]  M. Ishikawa,et al.  Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts , 2003 .

[12]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[13]  N. Yoshimoto,et al.  Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode , 2010 .

[14]  Martha Schreiber,et al.  Current Collectors for Positive Electrodes of Lithium-Based Batteries , 2005 .

[15]  H. Kurihara,et al.  Electrode Performance of Vanadium Pentoxide Xerogel Prepared by Microwave Irradiation as an Active Cathode Material for Rechargeable Magnesium Batteries , 2012 .

[16]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[17]  Jun Yang,et al.  Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts , 2012 .

[18]  Héctor D. Abruña,et al.  Batteries and electrochemical capacitors , 2008 .

[19]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[20]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[21]  E. Peled,et al.  Solid Electrolyte Interphase (SEI) Electrode II . The Formation and Properties of the SEI on Magnesium in Solutions , 1981 .

[22]  Jianzhi Sun Preparation and characterization of novel positive electrode material for magnesium cells , 2013, Chemical Monthly.

[23]  Fuminori Mizuno,et al.  A high energy-density tin anode for rechargeable magnesium-ion batteries. , 2013, Chemical communications.

[24]  D. Aurbach,et al.  Improved Electrolyte Solutions for Rechargeable Magnesium Batteries , 2006 .

[25]  M. Ishikawa,et al.  Rechargeable Magnesium Batteries Using a Novel Polymeric Solid Electrolyte , 2001 .

[26]  Yuyan Shao,et al.  Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. , 2014, Nano letters.

[27]  M. E. Leonowicz,et al.  Facile syntheses of new molybdenum and tungsten sulfido complexes. Structure of Mo3S92 , 1983 .

[28]  Doron Aurbach,et al.  Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. , 2014, Chemical communications.

[29]  Xiuling Gao,et al.  Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes , 2006 .

[30]  D. Aurbach,et al.  Spectroelectrochemical studies of magnesium deposition by in situ FTIR spectroscopy , 2001 .

[31]  Min‐Sik Park,et al.  Size-controlled Chevrel Mo 6 S 8 as Cathode Material for Mg Rechargeable Battery , 2013 .

[32]  E. Matsubara,et al.  Synthesis of Spinel-Type Magnesium Cobalt Oxide and Its Electrical Conductivity , 2008 .

[33]  M. Miyayama,et al.  High capacity positive electrodes for secondary Mg-ion batteries , 2012 .

[34]  Y. Katayama,et al.  Magnesium insertion into Mg0.5+y(FeyTi1−y)2(PO4)3 , 2001 .

[35]  N. Munichandraiah,et al.  Effect of plasticizers on magnesium-poly(ethyleneoxide) polymer electrolyte , 2000 .

[36]  Jiulin Wang,et al.  Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. , 2010, Chemical communications.

[37]  K. Miwa,et al.  A novel inorganic solid state ion conductor for rechargeable Mg batteries. , 2014, Chemical communications.

[38]  Jiulin Wang,et al.  Sol–gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior , 2008 .

[39]  W. Lamanna,et al.  Evaluation of Mg[N(SO2CF3)2]2/Acetonitrile Electrolyte for Use in Mg-Ion Cells , 2012 .

[40]  Dong‐Won Kim,et al.  Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries , 2004 .

[41]  E. Sheha Ionic conductivity and dielectric properties of plasticized PVA0.7(LiBr)0.3(H2SO4)2.7M solid acid membrane and its performance in a magnesium battery , 2009 .

[42]  M. D. Glasse,et al.  Novel solid state polymeric batteries , 1986 .

[43]  S. Sampath,et al.  Magnesium ion conducting, room temperature molten electrolytes , 2009 .

[44]  Minato Egashira,et al.  Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries , 2012 .

[45]  N. Munichandraiah,et al.  Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte , 1999 .

[46]  G. Amatucci,et al.  Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide , 2001 .

[47]  R. Nesper,et al.  Crystal Structure of the Product of Mg2+Insertion into V2O5Single Crystals , 1996 .

[48]  Y. Kudo,et al.  Complex Structures and Electrochemical Properties of Magnesium Electrolytes , 2008, ECS Transactions.

[49]  Jiulin Wang,et al.  Electrochemical Intercalation of Mg2+ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode , 2009 .

[50]  C. Liebenow,et al.  The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates , 2000 .

[51]  Doron Aurbach,et al.  XPS Investigation of Surface Chemistry of Magnesium Electrodes in Contact with Organic Solutions of Organochloroaluminate Complex Salts , 2003 .

[52]  M. Miyayama,et al.  Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries , 2013 .

[53]  H. Masuda,et al.  Multivalent cation conductive solid polymer electrolytes using photo-cross-linked polymers: II. Magnesium and zinc trifluoromethanesulfonate systems , 1999 .

[54]  Jiulin Wang,et al.  Study of Key Factors Influencing Electrochemical Reversibility of Magnesium Deposition and Dissolution , 2006 .

[55]  Martin Winter,et al.  Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[57]  V. Aravindan,et al.  Polyvinylidene fluoride‐based novel polymer electrolytes for magnesium‐rechargeable batteries with Mg(CF3SO3)2 , 2009 .

[58]  Fan Zhang,et al.  Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries , 2012 .

[59]  Prashanth H. Jampani,et al.  A Convenient Approach to Mo6S8 Chevrel Phase Cathode for Rechargeable Magnesium Battery , 2014 .

[60]  S. Sampath,et al.  Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes , 2010 .

[61]  K. S. Nanjundaswamy,et al.  Convenient synthesis of the Chevrel phases metal molybdenum sulfide, MxMo6S8 (M = copper, lead, lanthanum or gadolinium) , 1987 .

[62]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[63]  J. Long,et al.  Metal–organic frameworks as solid magnesium electrolytes , 2014 .

[64]  T. Doi,et al.  Potential positive electrodes for high-voltage magnesium-ion batteries , 2011 .

[65]  L. P. Lossius,et al.  Plating of magnesium from organic solvents , 1996 .

[66]  N. Munichandraiah,et al.  A gel polymer electrolyte of magnesium triflate , 2000 .

[67]  D. Aurbach,et al.  Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance , 2012 .

[68]  D. Aurbach,et al.  Kinetic and Thermodynamic Studies of Mg2 + and Li + Ion Insertion into the Mo6 S 8 Chevrel Phase , 2004 .

[69]  Susumu Suzuki,et al.  Preparation of Cathode Active Material for Rechargeable Magnesium Battery by Atmospheric Pressure Microwave Discharge Using Carbon Felt Pieces , 2008 .

[70]  T. Hamaide,et al.  Cationic conductivity and relaxation processes in solid polymer electrolytes with lithium perfluoroalkyl sulfonate or sulfonato end-capped poly(ethylene oxide) , 1993 .

[71]  D. Aurbach,et al.  The crystal structure of the inorganic surface films formed on Mg and Li intercalation compounds and the electrode performance , 2006 .

[72]  Jun Chen,et al.  TiS2 nanotubes as the cathode materials of Mg-ion batteries. , 2004, Chemical communications.

[73]  S. Hashmi,et al.  Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application , 2011 .

[74]  D. Aurbach,et al.  Structural Analysis of Electrolyte Solutions Comprising Magnesium−Aluminate Chloro−Organic Complexes by Raman Spectroscopy , 2007 .

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[77]  Doron Aurbach,et al.  Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. , 2011, Journal of the American Chemical Society.

[78]  E. Sheha,et al.  A high voltage magnesium battery based on H2SO4-doped (PVA)0.7(NaBr)0.3 solid polymer electrolyte , 2008 .

[79]  J. L. Acosta,et al.  Synthesis and characterization of polymeric electrolytes for solid state magnesium batteries , 1998 .

[80]  C. Ling,et al.  Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology , 2012 .

[81]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[82]  C. Liebenow Reversibility of electrochemical magnesium deposition from Grignard solutions , 2013 .

[83]  Jun Yang,et al.  Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium , 2006 .

[84]  A. Arof,et al.  Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors , 2011 .

[85]  Jiulin Wang,et al.  Reversibility of electrochemical magnesium deposition from tetrahydrofuran solutions containing pyrrolidinyl magnesium halide , 2011 .

[86]  Y. Katayama,et al.  Preparation and electrochemical magnesium insertion behaviors of Mg0.5+y(MeyTi1-y)2(PO4)3 (Me = Cr, Fe) , 2002 .

[87]  Jun Chen,et al.  First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries , 2012 .

[88]  N. Munichandraiah,et al.  Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte , 2001 .

[89]  N. Yoshimoto,et al.  Electrochemical co-deposition of magnesium with lithium from quaternary ammonium-based ionic liquid , 2011 .

[90]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[91]  Bingkun Guo,et al.  Highly soluble alkoxide magnesium salts for rechargeable magnesium batteries , 2014 .

[92]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[93]  A. McGhie,et al.  Ionic Conductivity in Complexes of Poly(ethylene oxide) and MgCl2 , 1986 .

[94]  Jiulin Wang,et al.  Study of electronic effect of Grignard reagents on their electrochemical behavior , 2010 .

[95]  J. Pereira‐Ramos,et al.  Electrochemical formation of a magnesium vanadium bronze MgxV2O5 in sulfone-based electrolytes at 150°C , 1987 .

[96]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[97]  Ricardo M. Souto,et al.  Origins of pitting corrosion , 2004 .

[98]  E. Matsubara,et al.  Electrochemical Stability of Magnesium Battery Current Collectors in a Grignard Reagent-Based Electrolyte , 2013 .

[99]  D. Aurbach,et al.  Magnesium Deposition and Dissolution Processes in Ethereal Grignard Salt Solutions Using Simultaneous EQCM‐EIS and In Situ FTIR Spectroscopy , 1999 .

[100]  Ayyakkannu Manivannan,et al.  A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte , 2013 .

[101]  E. Matsubara,et al.  Electrochemical Stability of Metal Electrodes for Reversible Magnesium Deposition/Dissolution in Tetrahydrofuran Dissolving Ethylmagnesium Chloride , 2012 .

[102]  Jiulin Wang,et al.  Magnesium cobalt silicate materials for reversible magnesium ion storage , 2012 .

[103]  N. Munichandraiah,et al.  Poly(methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application , 2002 .

[104]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[105]  D. Aurbach Characterization of batteries by electrochemical and non-electrochemical techniques , 2007 .

[106]  In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn , 2013, 1303.3416.

[107]  N. Jo,et al.  The influence of the cations of salts on the electrochemical stability of a solid polymer electrolyte based on segmented poly(ether urethane) , 2010 .

[108]  A. Brenner Note on the Electrodeposition of Magnesium from an Organic Solution of a Magnesium‐Boron Complex , 1971 .

[109]  D. Aurbach,et al.  A comparison between intercalation of Li and Mg ions into the model chevrel phase compound (MxMo6S8) : Impedance spectroscopic studies , 2005 .

[110]  O. Brown,et al.  The magnesium and magnesium amalgam electrodes in aprotic organic solvents a kinetic study , 1985 .

[111]  S. Hashmi,et al.  Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application , 2011 .

[112]  Atsuo Yamada,et al.  Jahn–Teller instability in spinel Li–Mn–O , 1999 .

[113]  P. Ngoepe,et al.  Voltage Profile, Structural Prediction, and Electronic Calculations for MgxMo6S8 , 2003 .

[114]  Doron Aurbach,et al.  A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response , 2008 .

[115]  E. Peled,et al.  The Kinetics of the Magnesium Electrode in Thionyl Chloride Solutions , 1977 .

[116]  Jiulin Wang,et al.  MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries , 2011 .

[117]  D. Aurbach,et al.  A comparative study of Mg2+ and Li+ ion insertions into the Mo6S8 Chevrel phase using electrochemical impedance spectroscopy , 2004 .

[118]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[119]  D. Aurbach,et al.  New Insight on the Unusually High Ionic Mobility in Chevrel Phases , 2009 .

[120]  M. Wakihara,et al.  Investigation of the Effect of Lewis Acid on Ionic Conductivity of Polymer Electrolyte Containing Mg Salt , 2003 .

[121]  P. Novák,et al.  Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide , 1995 .

[122]  M. Miyayama,et al.  Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries , 2012 .

[123]  D. Aurbach,et al.  Progress in nonaqueous magnesium electrochemistry , 2007 .

[124]  K. Yamaguchi,et al.  Constitution of Grignard reagent RMgCl in tetrahydrofuran. , 2001, Organic letters.

[125]  S. Takagi,et al.  Magnesium ion dynamics in Mg(BH4)2(1−x)X2x (X = Cl or AlH4) from first-principles molecular dynamics simulations , 2014 .

[126]  Rong Wu,et al.  Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid , 2005 .

[127]  P. Novák,et al.  Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes , 1993 .

[128]  Nobuko Yoshimoto,et al.  Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt , 2005 .

[129]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[130]  D. Aurbach,et al.  Solid‐State Rechargeable Magnesium Batteries , 2003 .

[131]  Doron Aurbach,et al.  A short review on the comparison between Li battery systems and rechargeable magnesium battery technology , 2001 .

[132]  S. Passerini,et al.  Intercalation of Polyvalent Cations into V2O5 Aerogels , 1998 .

[133]  D. Aurbach,et al.  The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions , 2005 .

[134]  Jiulin Wang,et al.  Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries , 2011 .

[135]  Y. Kumar,et al.  Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte , 2011 .

[136]  Y. Katayama,et al.  Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3 , 2001 .

[137]  S. Hirano,et al.  A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. , 2012, Chemical communications.

[138]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8(T = S, Se). 2. The Crystal Structure of Triclinic MgMo6Se8 , 2006 .

[139]  P. Bruce,et al.  Chemical intercalation of magnesium into solid hosts , 1991 .

[140]  Doron Aurbach,et al.  Nonaqueous magnesium electrochemistry and its application in secondary batteries. , 2003, Chemical record.

[141]  D. Aurbach,et al.  Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries , 2008 .

[142]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[143]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[144]  Yongchang Liu,et al.  Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries , 2013 .

[145]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[146]  D. Aurbach,et al.  On the mechanisms of reversible magnesium deposition processes , 2001 .

[147]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[148]  P. Novák,et al.  Magnesium insertion batteries — an alternative to lithium? , 1995 .

[149]  D. Aurbach,et al.  New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds. , 2007, Chemical communications.

[150]  Lidong Wang,et al.  Electrochemical Codeposition of Magnesium-Based Alloys from Dimethylformamide Solutions at Room Temperature , 2010 .

[151]  Jiulin Wang,et al.  A novel thiolate-based electrolyte system for rechargeable magnesium batteries , 2014 .

[152]  S. Manzhos,et al.  A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets , 2013 .

[153]  D. Aurbach,et al.  The Study of Reversible Magnesium Deposition by In Situ Scanning Tunneling Microscopy , 2001 .

[154]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[155]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[156]  P. Novák,et al.  Electrochemical Insertion of Magnesium into Hydrated Vanadium Bronzes , 1995 .

[157]  Lifang Jiao,et al.  Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries , 2006 .

[158]  D. Aurbach,et al.  Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases , 2006 .

[159]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[160]  Ashish Gupta,et al.  Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes , 2012, Journal of Solid State Electrochemistry.

[161]  M. Decroux,et al.  Recent progress in chevrel phase syntheses: A new low temperature synthesis of the superconducting lead compound , 1994 .

[162]  D. Aurbach,et al.  Cu2Mo6S8 Chevrel Phase, A Promising Cathode Material for New Rechargeable Mg Batteries: A Mechanically Induced Chemical Reaction , 2002 .

[163]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[164]  Kaoru Nakajima,et al.  The status of Sony Li-ion polymer battery , 2001 .

[165]  Jiulin Wang,et al.  Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries , 2014, TheScientificWorldJournal.

[166]  Rana Mohtadi,et al.  Boron Clusters as Highly Stable Magnesium-Battery Electrolytes , 2014, Angewandte Chemie.

[167]  W. O'grady,et al.  Studies on the Electrodeposition of Magnesium in Ionic Liquids , 2008 .

[168]  F. Ding,et al.  Electrochemical behavior of aluminum in Grignard reagents/THF electrolytic solutions for rechargeable magnesium batteries , 2013 .

[169]  M. Matsui Study on electrochemically deposited Mg metal , 2010 .

[170]  Yongchang Liu,et al.  Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. , 2013, Nanoscale.

[171]  S. Selladurai,et al.  Effect of fillers on magnesium–poly(ethylene oxide) solid polymer electrolyte , 2006 .

[172]  J. Kumar,et al.  Synthesis and magnetic properties of nanocrystals of cubic defect spinel MgMnO3 , 2010 .

[173]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[174]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[175]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[176]  D. Pletcher,et al.  Studies using microelectrodes of the Mg(II)/Mg couple in tetrahydrofuran and propylene carbonate , 1986 .

[177]  G. Boyle Renewable Energy: Power for a Sustainable Future , 2012 .

[178]  M. Fichtner,et al.  Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries , 2013 .

[179]  P. Dickens,et al.  The insertion of magnesium into α-U3O8 , 1992 .

[180]  D. Aurbach,et al.  Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries , 2004 .

[181]  D. Stilwell,et al.  Discharge and AC Impedance Studies of Lithium, Calcium, and Magnesium Anodes in Bromine Trifluoride , 1990 .

[182]  H. Tamura,et al.  The properties of some mixed organic electrolyte solutions and their effects on the anodic performances of Mg electrodes , 1976 .

[183]  D. Aurbach,et al.  A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries , 2009 .

[184]  M. Ishikawa,et al.  Ionic conductance of polymeric electrolytes consisting of magnesium salts dissolved in cross-linked polymer matrix with linear polyether , 2001 .

[185]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[186]  D. Aurbach,et al.  SECONDARY BATTERIES | Magnesium Batteries (Secondary and Primary) , 2009 .

[187]  Y. Kumar,et al.  Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: A comparative study with lithium and magnesium systems , 2011 .

[188]  G. Soloveichik,et al.  Magnesium borohydride as a hydrogen storage material: Properties and dehydrogenation pathway of unsolvated Mg(BH4)2 , 2009 .

[189]  Xiaogang Zhang,et al.  Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. , 2004, Journal of colloid and interface science.

[190]  Jiulin Wang,et al.  Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4 , 2008 .

[191]  C. Sequeira,et al.  Factors affecting the conductivity of divalent polymeric electrolytes , 1990 .

[192]  D. Aurbach,et al.  Alkyl Group Transmetalation Reactions in Electrolytic Solutions Studied by Multinuclear NMR , 2004 .

[193]  D. Aurbach,et al.  On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions , 1999 .

[194]  S. Hashmi,et al.  Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte , 2009 .

[195]  M. Ishikawa,et al.  Ionic conductance behavior of polymeric electrolytes containing magnesium salts and their application to rechargeable batteries , 2002 .

[196]  Jun Yang,et al.  Electrodeposition of magnesium film from BMIMBF4 ionic liquid , 2006 .

[197]  Jiulin Wang,et al.  Halogen-free boron based electrolyte solution for rechargeable magnesium batteries , 2014 .

[198]  C. Ling,et al.  First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties , 2012 .

[199]  Jiulin Wang,et al.  Electrochemical Magnesium Deposition and Dissolution with High Efficiency in Ionic Liquid , 2005 .

[200]  M. Wakihara,et al.  Influence of PEG-Borate Ester as a Lewis Acid on Ionic Conductivity of Polymer Electrolyte Containing Mg-Salt , 2003 .

[201]  Yuyan Shao,et al.  Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance , 2013, Scientific Reports.

[202]  E. Matsubara,et al.  Effects of water content on magnesium deposition from a Grignard reagent-based tetrahydrofuran electrolyte , 2013, Research on chemical intermediates (Print).

[203]  R. J. Gummow,et al.  Morphology and Preferred Orientation of Pulse Electrodeposited Magnesium , 2010 .

[204]  D. Aurbach,et al.  Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. , 2008, Inorganic chemistry.

[205]  D. Aurbach,et al.  Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium , 2005 .

[206]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 1. Crystal Structure of the Sulfides , 2006 .

[207]  Yuyan Shao,et al.  A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries , 2014 .

[208]  J. Muldoon,et al.  Corrosion of magnesium electrolytes: chlorides – the culprit , 2013 .