List decoding of error correcting codes

Error-correcting codes are combinatorial objects designed to cope with the problem of reliable transmission of information on a noisy channel. A fundamental algorithmic challenge in coding theory and practice is to efficiently decode the original transmitted message even when a few symbols of the received word are in error. The naive search algorithm runs in exponential time, and several classical polynomial time decoding algorithms are known for specific code families. Traditionally, however, these algorithms have been constrained to output a unique codeword. Thus they faced a “combinatorial barrier” and could only correct up to d/2 errors, where d is the minimum distance of the code. An alternate notion of decoding called list decoding, proposed independently by Elias and Wozencraft in the late 50s, allows the decoder to output a list of all codewords that differ from the received word in a certain number of positions. Even when constrained to output a relatively small number of answers, list decoding permits recovery from errors well beyond the d/2 barrier, and opens up the possibility of meaningful error-correction from large amounts of noise. However, for nearly four decades after its conception, this potential: of list decoding was largely untapped due to the lack of efficient algorithms to list decode beyond d/2 errors for useful families of codes. This thesis presents a detailed investigation of list decoding, and proves its potential, feasibility, and importance as a combinatorial and algorithmic concept. We prove several; combinatorial results that sharpen our understanding of the potential and limits of list; decoding, and its relation to more classical parameters like the rate and minimum distance. The crux of the thesis is its algorithmic results, which were lacking in the early works on list decoding. Our algorithmic results include: (1) Efficient list decoding algorithms for classically studied codes such as Reed-Solomon codes and algebraic-geometric codes. In particular, building upon an earlier algorithm due to Sudan, we present the first polynomial time algorithm to decode Reed-Solomon codes beyond d/2 errors for every value of the rate. (2) A new soft list decoding algorithm for Reed-Solomon and algebraic-geometric codes and novel decoding algorithms for concatenated codes based on it. (3) New code constructions using concatenation and/or expander graphs that have good (and sometimes near-optimal) rate and are efficiently list decodable from extremely large amounts of noise. (4) Expander-based constructions of linear time encodable and decodable codes that ca4 correct up to the maximum possible fraction of errors, using unique (not list) decoding. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  Amnon Ta-Shma,et al.  Extractors from Reed-Muller codes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[2]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[3]  M. Sudan Decoding Reed Solomon Codes beyond the Error-Correction Diameter , 1997 .

[4]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[5]  H. Lenstra,et al.  Codes from algebraic number fields , 1986 .

[6]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[7]  Jin-Yi Cai,et al.  On the Hardness of Permanent , 1999, STACS.

[8]  D. Sivakumar,et al.  On membership comparable sets , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[10]  Ravi Kumar,et al.  Proofs, codes, and polynomial-time reducibilities , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[11]  A.N. Skorobogatov,et al.  On the decoding of algebraic-geometric codes , 1990, IEEE Trans. Inf. Theory.

[12]  Venkatesan Guruswami,et al.  Expander-based constructions of efficiently decodable codes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[13]  Jessica Staddon,et al.  Efficient Traitor Tracing Algorithms Using List Decoding , 2001, ASIACRYPT.

[14]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[15]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[16]  Matthew K. Franklin,et al.  An Efficient Public Key Traitor Tracing Scheme , 1999, CRYPTO.

[17]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[18]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[19]  Richard J. Lipton,et al.  New Directions In Testing , 1989, Distributed Computing And Cryptography.

[20]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[21]  Luca Trevisan,et al.  Constructions of Near-Optimal Extractors Using Pseudo-Random Generators , 1998, Electron. Colloquium Comput. Complex..

[22]  Ruud Pellikaan,et al.  On a decoding algorithm for codes on maximal curves , 1989, IEEE Trans. Inf. Theory.

[23]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[24]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[25]  Ignacio Luengo,et al.  Codes on Drinfeld Modular Curves , 2000 .

[26]  Tom Høholdt,et al.  Construction and decoding of a class of algebraic geometry codes , 1989, IEEE Trans. Inf. Theory.

[27]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[28]  Mihir Bellare,et al.  Free Bits, PCPs, and Nonapproximability-Towards Tight Results , 1998, SIAM J. Comput..

[29]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[30]  V. Blinovsky,et al.  Asymptotic Combinatorial Coding Theory , 1997 .

[31]  Noam Nisan,et al.  Extracting randomness: how and why. A survey , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[32]  Dan Boneh,et al.  Finding smooth integers in short intervals using CRT decoding , 2000, STOC '00.

[33]  Andrew C. Lee,et al.  Review of Modern cryptography, probabilistic proofs and pseudorandomness algorithms and combinatorics, vol 17 by Oded Goldreich. Springer Verlag, 1999. , 2003, SIGA.

[34]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[35]  Dana Ron,et al.  Chinese remaindering with errors , 2000, IEEE Trans. Inf. Theory.

[36]  Ronitt Rubinfeld,et al.  Reconstructing Algebraic Functions from Mixed Data , 1998, SIAM J. Comput..

[37]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[38]  Ronitt Rubinfeld,et al.  Learning Polynomials with Queries: The Highly Noisy Case , 2000, SIAM J. Discret. Math..

[39]  Noam D. Elkies,et al.  Excellent codes from modular curves , 2001, STOC '01.

[40]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[41]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[42]  V. Wei,et al.  Error-Correcting Codes for List Decoding , 1994 .

[43]  Daniel Augot,et al.  A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes , 2000, IEEE Trans. Inf. Theory.

[44]  Selmer M. Johnson Improved asymptotic bounds for error-correcting codes , 1963, IEEE Trans. Inf. Theory.

[45]  S. Vladut,et al.  Number of points of an algebraic curve , 1983 .

[46]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.

[47]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[48]  Venkatesan Guruswami Limits to list decodability of linear codes , 2002, STOC '02.

[49]  Simon Litsyn,et al.  A New Upper Bound on Codes Decodable into Size-2 Lists , 1999 .

[50]  R. Beigel NP-hard Sets are P-Superterse Unless R = NP , 1988 .

[51]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[52]  Henning Stichtenoth,et al.  Algebraic function fields over finite fields with many rational places , 1995, IEEE Trans. Inf. Theory.

[53]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[54]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[55]  Peter Elias,et al.  Zero error capacity under list decoding , 1988, IEEE Trans. Inf. Theory.

[56]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[57]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[58]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[59]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[60]  D. Spielman,et al.  Computationally efficient error-correcting codes and holographic proofs , 1995 .

[61]  D. Spielman,et al.  Expander codes , 1996 .

[62]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[63]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[64]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[65]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[66]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[67]  Venkatesan Guruswami,et al.  List decoding from erasures: bounds and code constructions , 2001, IEEE Trans. Inf. Theory.

[68]  Thomas Jakobson,et al.  Cryptanalysis of Block Ciphers with Probabilistic Non-linear Relations of Low Degree , 1998, CRYPTO.

[69]  A. Joffe On a Set of Almost Deterministic $k$-Independent Random Variables , 1974 .

[70]  R. Roth,et al.  Upper bounds on the list-decoding radius of Reed-Solomon codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[71]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[72]  Carsten Lund,et al.  On the hardness of computing the permanent of random matrices , 1996, STOC '92.

[73]  Gilles Zémor,et al.  On expander codes , 2001, IEEE Trans. Inf. Theory.

[74]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[75]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.

[76]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[77]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[78]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[79]  David M. Mandelbaum,et al.  Further Results on Decoding Arithmetic Residue COdeS , 1978 .

[80]  Paul S. Wang,et al.  Polynomial Factorization Sharp Bounds, Efficient Algorithms , 1993, J. Symb. Comput..

[81]  Venkatesan Guruswami,et al.  List decoding algorithms for certain concatenated codes , 2000, STOC '00.

[82]  Richard J. Lipton,et al.  Computing from partial solutions , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[83]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[84]  Michael A. Tsfasman,et al.  Modular curves and codes with a polynomial construction , 1984, IEEE Trans. Inf. Theory.

[85]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[86]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[87]  Venkatesan Guruswami,et al.  Extensions to the Johnson bound , 2001 .

[88]  Michael Langberg,et al.  On the hardness of approximating N P witnesses , 2000, APPROX.

[89]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[90]  Ba-Zhong Shen A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate , 1993, IEEE Trans. Inf. Theory.

[91]  Dorothy E. Denning,et al.  Cryptography and Data Security , 1982 .

[92]  Richard M. Karp,et al.  Efficient Randomized Pattern-Matching Algorithms , 1987, IBM J. Res. Dev..

[93]  Jørn Justesen,et al.  On the complexity of decoding Reed-Solomon codes (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[94]  Victor K.-W. Wei,et al.  Improved lower bounds on the sizes of error-correcting codes for list decoding , 1994, IEEE Trans. Inf. Theory.

[95]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[96]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[97]  Tom Høholdt,et al.  Bounds on list decoding of MDS codes , 2001, IEEE Trans. Inf. Theory.

[98]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[99]  E. J. Weldon Justesen's construction-The low-rate case (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[100]  Elchanan Mossel,et al.  On the complexity of approximating the VC dimension , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[101]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[102]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[103]  Tom Høholdt,et al.  Decoding Hermitian Codes with Sudan's Algorithm , 1999, AAECC.

[104]  Tom Høholdt,et al.  Fast decoding of codes from algebraic plane curves , 1992, IEEE Trans. Inf. Theory.

[105]  Elwyn R. Berlekamp,et al.  Bounded distance+1 soft-decision Reed-Solomon decoding , 1996, IEEE Trans. Inf. Theory.

[106]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[107]  Frank Thomson Leighton,et al.  Guessing secrets , 2001, SODA '01.

[108]  David M. Mandelbaum,et al.  On a class of arithmetic codes and a decoding algorithm (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[109]  Venkatesan Guruswami,et al.  Combinatorial bounds for list decoding , 2002, IEEE Trans. Inf. Theory.

[110]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[111]  Madhu Sudan List decoding: algorithms and applications , 2000, SIGA.

[112]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudo-random generator , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[113]  Frank Harary,et al.  Graph Theory , 2016 .

[114]  Victor Zinoviev,et al.  Spherical codes generated by binary partitions of symmetric pointsets , 1995, IEEE Trans. Inf. Theory.

[115]  C. Hooley On Artin's conjecture. , 1967 .

[116]  Shuhong Gao,et al.  Computing Roots of Polynomials over Function Fields of Curves , 1999 .

[117]  Noam D. Elkies,et al.  Explicit Modular Towers , 2001, math/0103107.

[118]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[119]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[120]  Rudolf Ahlswede,et al.  Channel capacities for list codes , 1973, Journal of Applied Probability.

[121]  Venkatesan Guruswami Constructions of codes from number fields , 2003, IEEE Trans. Inf. Theory.

[122]  A. Brouwer Bounds on the size of linear codes , 1998 .

[123]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[124]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[125]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[126]  Noga Alon,et al.  Guessing secrets efficiently via list decoding , 2002, SODA '02.

[127]  Noam D. Elkies,et al.  Excellent nonlinear codes from modular curves , 2001, STOC 2001.

[128]  Madhu Sudan,et al.  Highly Resilient Correctors for Polynomials , 1992, Inf. Process. Lett..

[129]  Venkatesan Guruswami,et al.  "Soft-decision" decoding of Chinese remainder codes , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[130]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[131]  R. Blahut Theory and practice of error control codes , 1983 .

[132]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[133]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[134]  Amos Fiat,et al.  Tracing Traitors , 1994, CRYPTO.

[135]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[136]  Venkatesan Guruswami,et al.  On representations of algebraic-geometry codes , 2001, IEEE Trans. Inf. Theory.

[137]  Marcos A. Kiwi Testing and Weight Distributions of Dual Codes , 1997, Electron. Colloquium Comput. Complex..

[138]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[139]  Yu. I. Manin,et al.  Linear codes and modular curves , 1985 .

[140]  K. Y. Lin,et al.  Computational Number Theory and Digital Signal Processing: Fast Algorithms and Error Control Techniques , 1994 .

[141]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[142]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[143]  Noam Nisan,et al.  On Yao's XOR-Lemma , 1995, Electron. Colloquium Comput. Complex..

[144]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[145]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[146]  Amin Shokrollahi,et al.  List Decoding of Algebraic-Geometric Codes , 1999, IEEE Trans. Inf. Theory.

[147]  Volodia Blinovsky Lower Bound for the Linear Multiple Packing of the Binary Hamming Space , 2000, J. Comb. Theory, Ser. A.

[148]  Alexander Barg,et al.  Error exponents of expander codes , 2002, IEEE Trans. Inf. Theory.