INTERSTELLAR SONIC AND ALFVÉNIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 5123. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfv?n Mach numbers. For three-dimensional density, column density, and Position-Position-Velocity data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfv?nic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfv?nic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.

[1]  A. Lazarian,et al.  Emissivity Statistics in Turbulent Compressible Magnetohydrodynamic Flows and the Density-Velocity Correlation , 2001, astro-ph/0102380.

[2]  M. Heyer,et al.  Application of Principal Component Analysis to Large-Scale Spectral Line Imaging Studies of the Interstellar Medium , 1997 .

[3]  G. Kowal,et al.  NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS , 2009, 0903.2052.

[4]  M. Acuna,et al.  MAGNETIC FIELD STRENGTH FLUCTUATIONS AND TEMPERATURE IN THE HELIOSHEATH , 2009 .

[5]  Volker Ossenkopf,et al.  Statistics of velocity centroids: effects of density–velocity correlations and non‐Gaussianity , 2007 .

[6]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[7]  Bruce G. Elmegreen,et al.  A FRACTAL ORIGIN FOR THE MASS SPECTRUM OF INTERSTELLAR CLOUDS , 1996 .

[8]  R. Klessen,et al.  The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.

[9]  Statistical Properties of Line Centroid Velocity Increments in the ρ Ophiuchi Cloud , 1998 .

[10]  R. Narayan,et al.  The shape of a scatter-broadened image – I. Numerical simulations and physical principles , 1989 .

[11]  T. Arimitsu,et al.  Tsallis statistics and fully developed turbulence , 2000 .

[12]  Interstellar cloud structure: the statistics of centroid velocities , 2006, astro-ph/0602265.

[13]  Alyssa A. Goodman,et al.  The Spectral Correlation Function: A New Tool for Analyzing Spectral Line Maps , 1999, astro-ph/9903454.

[14]  G. Kowal,et al.  CHARACTERIZING MAGNETOHYDRODYNAMIC TURBULENCE IN THE SMALL MAGELLANIC CLOUD , 2009, 0911.3652.

[15]  A. Chepurnov,et al.  Topology of Neutral Hydrogen within the Small Magellanic Cloud , 2007, 0711.2430.

[16]  T. Arimitsu,et al.  Analysis of Fully Developed Turbulence by a Generalized Statistics , 2001 .

[17]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[18]  A. Lazarian,et al.  Statistics of Velocity from Spectral Data: Modified Velocity Centroids , 2003, astro-ph/0304007.

[19]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[20]  C. Gwinn,et al.  Evidence for an inner scale to the density turbulence in the interstellar medium , 1990 .

[21]  M. Miesch,et al.  Exponential Tails in the Centroid Velocity Distributions of Star-forming Regions , 1994, astro-ph/9412042.

[22]  P. Woodward,et al.  Synthesized spectra of turbulent clouds , 1994 .

[23]  A. Lazarian,et al.  Velocity Modification of H I Power Spectrum , 1999, astro-ph/9901241.

[24]  A. Lazarian,et al.  Compressible Magnetohydrodynamic Turbulence : mode coupling , scaling relations , anisotropy , viscosity-damped regime , and astrophysical implications , 2003 .

[25]  Reconnection in a weakly stochastic field , 1998, astro-ph/9811037.

[26]  J. Peek,et al.  VELOCITY SPECTRUM FOR H I AT HIGH LATITUDES , 2006, astro-ph/0611462.

[27]  A. Lazarian,et al.  Turbulence Spectra from Doppler-broadened Spectral Lines: Tests of the Velocity Channel Analysis and Velocity Coordinate Spectrum Techniques , 2006, astro-ph/0611463.

[28]  L. Burlaga,et al.  Multi‐scale probability distributions of solar wind speed fluctuations at 1 AU described by a generalized Tsallis distribution , 2004 .

[29]  D. Pogosyan,et al.  Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations , 2008, 0801.1151.

[30]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[31]  L. Burlaga,et al.  Multiscale structure of the magnetic field and speed at 1 AU during the declining phase of solar cycle 23 described by a generalized Tsallis probability distribution function , 2004 .

[32]  W. Goss,et al.  Power Spectrum of the Density of Cold Atomic Gas in the Galaxy toward Cassiopeia A and Cygnus A , 2000, astro-ph/0007366.

[33]  Velocity statistics from spectral line data: effects of density–velocity correlations, magnetic field and shear , 2002, astro-ph/0210159.

[34]  N. Arimitsu,et al.  Tsallis statistics and turbulence , 2002 .

[35]  Velocity centroids as tracers of the turbulent velocity statistics , 2004, astro-ph/0401603.

[36]  A. Lazarian,et al.  Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium , 2001, astro-ph/0105235.

[37]  A. Lazarian,et al.  TSALLIS STATISTICS AS A TOOL FOR STUDYING INTERSTELLAR TURBULENCE , 2009, 0905.2581.

[38]  V. Ossenkopf,et al.  Structure analysis of interstellar clouds - II. Applying the Delta-variance method to interstellar turbulence , 2008, 0804.4877.

[39]  Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes , 2002, astro-ph/0207568.

[40]  M. Acuna,et al.  Magnetic Fields in the Heliosheath: Voyager 1 Observations , 2005 .

[41]  M. Acuna,et al.  Magnetic Fields in the Heliosheath and Distant Heliosphere: Voyager 1 and 2 Observations During 2005 and 2006 , 2007 .

[42]  T. Arimitsu,et al.  Analysis of fully developed turbulence in terms of Tsallis statistics , 2000 .

[43]  G. Kowal,et al.  DENSITY STUDIES OF MHD INTERSTELLAR TURBULENCE: STATISTICAL MOMENTS, CORRELATIONS AND BISPECTRUM , 2008, 0811.0822.

[44]  C. Tsallis Nonextensive statistics: theoretical, experimental and computational evidences and connections , 1999, cond-mat/9903356.

[45]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[46]  Daniel J. Price,et al.  THE DENSITY VARIANCE–MACH NUMBER RELATION IN SUPERSONIC, ISOTHERMAL TURBULENCE , 2010, 1010.3754.

[47]  R. Teyssier,et al.  Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores , 2011, 1101.1574.

[48]  L. Burlaga,et al.  Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere , 2005 .

[49]  Mario H. Acuna,et al.  Tsallis Statistics of the Magnetic Field in the Heliosheath , 2006 .

[50]  A. Lazarian,et al.  Compressible sub-Alfvénic MHD turbulence in low-beta plasmas. , 2002, Physical review letters.

[51]  D. A. Green A power spectrum analysis of the angular scale of Galactic neutral hydrogen emission towards l=140°, b=0° , 1993 .

[52]  Stanley Osher,et al.  Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .

[53]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[54]  Mark S. Miesch,et al.  Statistical Analysis of Turbulence in Molecular Clouds , 1994 .

[55]  A. Goodman,et al.  The Effects of Noise and Sampling on the Spectral Correlation Function , 2000, astro-ph/0010344.

[56]  Velocity field statistics in star-forming regions. I. Centroid velocity observations , 1998, astro-ph/9810427.

[57]  V. Ossenkopf,et al.  Structure analysis of interstellar clouds - I. Improving the Delta-variance method , 2008, 0804.4649.

[58]  L. Burlaga,et al.  Tsallis distributions of magnetic field strength variations in the heliosphere: 5 to 90 AU , 2007 .

[59]  A. Lazarian,et al.  STUDYING TURBULENCE USING DOPPLER-BROADENED LINES: VELOCITY COORDINATE SPECTRUM , 2005, astro-ph/0511248.

[60]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[61]  L. Burlaga,et al.  Tsallis distributions of the large-scale magnetic field strength fluctuations in the solar wind from 7 to 87 AU , 2005 .

[62]  Michelle A. Borkin,et al.  A role for self-gravity at multiple length scales in the process of star formation , 2009, Nature.

[63]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[64]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[65]  A. Lazarian,et al.  Velocity modification of the power spectrum from an absorbing medium , 2004, astro-ph/0405461.

[66]  G. Kowal,et al.  VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS , 2010, 1003.3697.

[67]  A. Lazarian Turbulence Spectra from Doppler‐shifted Spectral Lines , 2006, astro-ph/0610765.

[68]  M. Juvela,et al.  THE POWER SPECTRUM OF TURBULENCE IN NGC 1333: OUTFLOWS OR LARGE-SCALE DRIVING? , 2009, 0910.1384.

[69]  J. Kauffmann,et al.  Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.

[70]  B. Elmegreen,et al.  A Fractal Analysis of the H I Emission from the Large Magellanic Cloud , 2000, astro-ph/0010578.

[71]  Multifractal Analysis of Various Probability Density Functions in Turbulence , 2003, cond-mat/0301516.

[72]  Compressible Magnetohydrodynamic Turbulence in Interstellar Plasmas , 2001, astro-ph/0106425.

[73]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[74]  Changbom Park,et al.  Topology of H I Gas Distribution in the Large Magellanic Cloud , 2007, 0704.2820.