Integration of microalgae biomass in biomethanation systems

Concerted efforts in the field of bioenergy are driving dynamic studies for the production of microalgae-based biogas systems. Its ability to recycle residual nutrients and carbon dioxide (CO2) products of the anaerobic effluent reflected anaerobic digestion as the most sustainable means for renewable energy generation in microalgae. These measures will aid to lessen the effect of greenhouse gas emissions and increase the prospects for the application of microalgae biomass in the field of food and agricultural technology, medicine, and bioengineering, contributing to the sustainability of the industries. To begin with, the experimental limitations associated with the cultivation of microalgae biomass need to be resolved. In spite of the extensive studies conducted in the field of bioengineering, problems related to culture optimization, high building and operation costs remained persistent. This review highlighted vital points of microalgae-based bioprocesses that require several advancements in order to improve the prospects of anaerobic digestion and discover novel renewable energy products. Coupled anaerobic digestion with microalgae cultivation systems requires intensive research as a distinct bioenergy generation process to uphold pilot-scale applications.

[1]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[2]  T. Lasheen,et al.  Chemical composition of the cell wall in some green algae species , 1993, Biologia Plantarum.

[3]  É. Latrille,et al.  Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. , 2014, Bioresource technology.

[4]  Beatriz P. Nobre,et al.  Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae , 2003 .

[5]  Martin Miltner,et al.  Membrane biogas upgrading processes for the production of natural gas substitute , 2010 .

[6]  D. Northcote,et al.  The chemical composition and structure of the cell wall of Chlorella pyrenoidosa. , 1958, The Biochemical journal.

[7]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[8]  Saija Rasi,et al.  Trace compounds of biogas from different biogas production plants. , 2007 .

[9]  W. Oswald,et al.  Biological transformation of solar energy. , 1960, Advances in applied microbiology.

[10]  B. G. Yeoh,et al.  Spirulina cultivation in digested sago starch factory wastewater , 2000, Journal of Applied Phycology.

[11]  E. Belarbi,et al.  A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. , 2000, Enzyme and microbial technology.

[12]  P. Dimroth,et al.  A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae , 2004, Archives of Microbiology.

[13]  Paris Honglay Chen,et al.  Thermochemical treatment for algal fermentation , 1998 .

[14]  M. Furuse,et al.  The effect of processing of Chlorella vulgaris: K-5 on in vitro and in vivo digestibility in rats , 1998 .

[15]  W. Oswald,et al.  Factors influencing methane fermentation of micro-algae , 1993 .

[16]  W. Pond,et al.  Amino acid composition and microbial contamination ofSpirulina maxima, a blue-green alga, grown on the effluent of different fermented animal wastes , 1981, Bulletin of environmental contamination and toxicology.

[17]  Peter Ulvskov,et al.  The Cell Walls of Green Algae: A Journey through Evolution and Diversity , 2012, Front. Plant Sci..

[18]  A. Godfree,et al.  Processes for managing pathogens. , 2005, Journal of environmental quality.

[19]  H. Vervaeren,et al.  Techniques for transformation of biogas to biomethane , 2011 .

[20]  P. Janczyk,et al.  Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats , 2007 .

[21]  Gumersindo Feijoo,et al.  Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena , 1995 .

[22]  Yin-Ru Chiang,et al.  Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. , 2006, Aquatic toxicology.

[23]  S. Sim,et al.  Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. , 2010, Bioresource technology.

[24]  M. Tsuzuki,et al.  Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata , 2001, Journal of Applied Phycology.

[25]  J. Doucha,et al.  Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor , 2005, Journal of Applied Phycology.

[26]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[27]  C. G. Carrington,et al.  Anaerobic digestion of microalgae residues resulting from the biodiesel production process , 2011 .

[28]  R. Samson,et al.  Influence of mechanical and thermochemical pretreatments on anaerobic digestion ofSpirulinamaxima algal biomass , 1983, Biotechnology Letters.

[29]  Benoît Chachuat,et al.  Three‐reaction model for the anaerobic digestion of microalgae , 2012, Biotechnology and bioengineering.

[30]  R. Craggs,et al.  Potential biogas scrubbing using a high rate pond. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[31]  Katarzyna Chojnacka,et al.  Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae , 2004 .

[32]  Emilio Molina,et al.  RETRACTED: A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil , 2000 .

[33]  G Charles Dismukes,et al.  Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. , 2008, Current opinion in biotechnology.

[34]  K. Stewart,et al.  The comparative aspects of cell wall chemistry in the green algae (chlorophyta) , 1980, Journal of Molecular Evolution.

[35]  J. Dewulf,et al.  Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. , 2010, Trends in biotechnology.

[36]  W. Oswald,et al.  Solar energy fixation and conversion with algal bacterial systems. Semiannual progress report, 1 Jul--30 Sep 1974 , 1974 .

[37]  S. Derenne,et al.  Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae , 1999 .

[38]  T. Punnett,et al.  The amino acid composition of algal cell walls. , 1966, Journal of general microbiology.

[39]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[40]  Olivier Bernard,et al.  Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. , 2009, Biotechnology advances.

[41]  Hong-Wei Yen,et al.  Anaerobic co-digestion of algal sludge and waste paper to produce methane. , 2007, Bioresource technology.

[42]  I Angelidaki,et al.  Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. , 2000, Water science and technology : a journal of the International Association on Water Pollution Research.

[43]  William F. Fagan,et al.  Nutritional constraints in terrestrial and freshwater food webs , 2000, Nature.

[44]  Wei Liao,et al.  FRESHWATER ALGAL CULTIVATION WITH ANIMAL WASTE FOR NUTRIENT REMOVAL AND BIOMASS PRODUCTION , 2012 .

[45]  E. P. S. Hernández,et al.  Anaerobic digestion of Chlorella vulgaris for energy production , 1993 .

[46]  Patrick J. McGinn,et al.  Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production , 2013, Journal of Applied Phycology.

[47]  Richard E. Speece,et al.  Anaerobic Biotechnology for Industrial Wastewaters , 1996 .

[48]  J. Benemann,et al.  Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) , 1998, Photosynthesis Research.

[49]  N. Bernet,et al.  Thermal pretreatment to improve methane production of Scenedesmus biomass , 2012 .

[50]  S. Harrison,et al.  Lipid productivity as a key characteristic for choosing algal species for biodiesel production , 2009, Journal of Applied Phycology.

[51]  F. Benitez,et al.  Arthospira sp. intensive cultures for food and biogas purification , 1993, Biotechnology Letters.

[52]  M. Eppink,et al.  Microalgae for the production of bulk chemicals and biofuels , 2010 .

[53]  A. Vergara-Fernández,et al.  Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. , 2008 .

[54]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[55]  S. Chae,et al.  Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. , 2006, Bioresource technology.

[56]  B. Mattiasson,et al.  Combined carbon and nitrogen removal from acetonitrile using algal–bacterial bioreactors , 2005, Applied Microbiology and Biotechnology.

[57]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[58]  F. Bux,et al.  Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. , 2011, Bioresource technology.

[59]  Yebo Li,et al.  Nutrient recovery from wastewater streams by microalgae: Status and prospects , 2013 .

[60]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[61]  Miguel Olaizola,et al.  Commercial development of microalgal biotechnology: from the test tube to the marketplace. , 2003, Biomolecular engineering.

[62]  S. Parsons,et al.  Struvite formation, control and recovery. , 2002, Water research.

[63]  P. Hatcher,et al.  New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. , 2003, Phytochemistry.

[64]  H. Carrère,et al.  Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability , 2006 .

[65]  Y. Bashan,et al.  Heterotrophic cultures of microalgae: metabolism and potential products. , 2011, Water research.

[66]  Jasvinder Singh,et al.  Commercialization potential of microalgae for biofuels production , 2010 .

[67]  René H. Wijffels,et al.  Harvesting of microalgae by bio-flocculation , 2010, Journal of Applied Phycology.

[68]  E. Becker Micro-algae as a source of protein. , 2007, Biotechnology advances.

[69]  C. Posten,et al.  Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production , 2008, BioEnergy Research.

[70]  Yebo Li,et al.  Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. , 2012, Bioresource technology.

[71]  Willy Verstraete,et al.  The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. , 2011, Bioresource technology.

[72]  Leena Sahlström,et al.  A review of survival of pathogenic bacteria in organic waste used in biogas plants. , 2003, Bioresource technology.

[73]  I. Angelidaki,et al.  Assessment of the anaerobic biodegradability of macropollutants , 2004 .

[74]  K. Okuda Structure and phylogeny of cell coverings , 2002, Journal of Plant Research.

[75]  Joan Mata-Álvarez,et al.  Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives , 2000 .

[76]  V. K. Vijay,et al.  Biogas scrubbing, compression and storage: perspective and prospectus in Indian context , 2005 .

[77]  F. Malcata,et al.  Metal uptake by microalgae: Underlying mechanisms and practical applications , 2012, Biotechnology progress.

[78]  C. Lan,et al.  Biofuels from Microalgae , 2008, Biotechnology progress.

[79]  Kwang Victor Lo,et al.  Removal of nitrogen from swine manure wastewaters by ammonia stripping , 1995 .

[80]  K. Möller,et al.  Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review , 2012 .

[81]  O. Kruse,et al.  Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. , 2010, Journal of biotechnology.

[82]  I. Ferrer,et al.  Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment , 2013 .

[83]  John R. Benemann,et al.  Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) , 2009, Applied biochemistry and biotechnology.

[84]  E. Eroğlu,et al.  Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. , 2010, Bioresource technology.

[85]  Laurent Lardon,et al.  Modeling anaerobic digestion of microalgae using ADM1. , 2011, Bioresource technology.

[86]  H. Gannoun,et al.  Optimization of Spongiochloris sp. biomass production in the abattoir digestate. , 2011, Bioresource technology.

[87]  I. Karube,et al.  CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae , 1995 .

[88]  D. Strik,et al.  A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage , 2006 .

[89]  D. Meindl,et al.  Composition of the cell wall of Chlorella fusca , 1982, Planta.

[90]  J. Benemann,et al.  Life Cycle Assessment for Microalgae Oil Production , 2012 .

[91]  Olaf Kruse,et al.  An economic and technical evaluation of microalgal biofuels , 2010, Nature Biotechnology.

[92]  J. Ogbonna,et al.  Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms , 2000, Journal of Applied Phycology.

[93]  Mustafa Türker,et al.  Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. , 2007, Bioresource technology.

[94]  S. Derenne,et al.  Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum , 1992 .

[95]  Helena M. Amaro,et al.  Advances and perspectives in using microalgae to produce biodiesel , 2011 .

[96]  R J Craggs,et al.  Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[97]  A. Svenson,et al.  Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. , 2003, Water research.

[98]  A Bonmatí,et al.  Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[99]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[100]  Frantisek Kastanek,et al.  Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products , 2010 .

[101]  K. S. Creamer,et al.  Inhibition of anaerobic digestion process: a review. , 2008, Bioresource technology.

[102]  B. Kok,et al.  Light Induced Absorption Changes in Photosynthetic Organisms. II. A Split-beam Difference Spectrophotometer. , 1959, Plant physiology.

[103]  M. Blumreisinger,et al.  Cell wall composition of chlorococcal algae , 1983 .

[104]  Willy Verstraete,et al.  Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions , 2012 .

[105]  R. L. Dobson,et al.  Electrocoagulation and separation of aqueous suspensions of ultrafine particles , 1995 .

[106]  A. Crofts Uptake of ammonium ion by chloroplasts, and the mechanism of amine uncoupling. , 1966, Biochemical and biophysical research communications.

[107]  H. B. Gotaas,et al.  Anaerobic digestion of Algae. , 1957, Applied microbiology.

[108]  J. T. Hauck,et al.  Effects of simulated flue gas on growth of microalgae , 1996 .

[109]  Razif Harun,et al.  Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. , 2011 .

[110]  D. Yang,et al.  The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. , 2009, Bioresource technology.

[111]  Wen‐Teng Wu,et al.  Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. , 2010, Bioresource technology.

[112]  Willy Verstraete,et al.  Revival of the biological sunlight‐to‐biogas energy conversion system , 2009, Biotechnology and bioengineering.