Phase space quantization and the operator moment problem
暂无分享,去创建一个
Pekka Lahti | Kari Ylinen | P. Lahti | K. Ylinen | J. Kiukas | Jukka Kiukas
[1] F. H. Szafraniec. Subnormality in the Quantum Harmonic Oscillator , 2000 .
[2] Jacob T. Schwartz,et al. Linear operators. Part II. Spectral theory , 2003 .
[3] Igor Kluvánek,et al. Vector measures and control systems , 1975 .
[4] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .
[5] P. Lahti,et al. Dilations of positive operator measures and bimeasures related to quantum mechanics , 2004 .
[6] Günther Ludwig. Foundations of quantum mechanics , 1983 .
[7] A. Voros,et al. An algebra of pseudodifferential operators and the asymptotics of quantum mechanics , 1978 .
[8] M. Hennings,et al. Mathematical Aspects of Weyl Quantization and Phase , 2000 .
[9] Nicolaas P. Landsman,et al. Mathematical Topics Between Classical and Quantum Mechanics , 1998 .
[10] R. McKelvey. The spectra of minimal self-adjoint extensions of a symmetric operator. , 1962 .
[11] Anatolij Dvurecenskij,et al. The uniqueness question in the multidimensional moment problem with applications to phase space observables , 2002 .
[12] Sylvia Pulmannová,et al. Coexistent observables and effects in quantum mechanics , 1997 .
[13] R. Werner. Screen observables in relativistic and nonrelativistic quantum mechanics , 1986 .
[14] On vector bimeasures , 1978 .
[15] Classical Representations of Quantum Mechanics Related to Statistically Complete Observables , 2006, quant-ph/0610122.
[16] W. Thirring. Quantum Mathematical Physics , 2002 .
[17] R. Beukema. Positive operator-valued measures and phase-space representations , 2003 .
[18] A. Holevo. Statistical structure of quantum theory , 2001 .
[19] Oded Kafri,et al. Information theory and Thermodynamics , 2006, ArXiv.
[20] Positive operator valued measures covariant with respect to an irreducible representation , 2003, quant-ph/0302187.
[21] Marian Grabowski,et al. Operational Quantum Physics , 2001 .
[22] M. W. Wong. Wavelet transforms and localization operators , 2002 .
[23] P. Lahti,et al. The moment operators of phase space observables and their number margins , 1998 .
[24] Intrinsic and operational observables in quantum mechanics. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[25] Z. Tao,et al. Observables, maximal symmetric operators and POV measures in quantum mechanics , 1995 .
[26] Two questions on quantum probability , 2004, quant-ph/0408186.
[27] F. Schroeck,et al. Quantum Mechanics on Phase Space , 1995 .
[28] W. M. de Muynck,et al. Compatibility of observables represented by positive operator‐valued measures , 1987 .
[29] Pekka Lahti,et al. The Theory of Symmetry Actions in Quantum Mechanics: with an Application to the Galilei Group , 2004 .
[30] G. Folland. Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .
[31] S. Berberian. Notes on spectral theory , 1966 .
[32] Moment operators of the Cartesian margins of the phase space observables , 2004, quant-ph/0412093.
[33] E. B. Davies. Quantum theory of open systems , 1976 .
[34] Operator integrals and phase space observables , 1999 .
[35] A DILEMMA IN REPRESENTING OBSERVABLES IN QUANTUM MECHANICS , 2002, quant-ph/0206168.
[36] A. Dvurecenskij,et al. Positive operator measures determined by their moment sequences , 2000 .
[37] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[38] Normal covariant quantization maps , 2005, quant-ph/0507024.
[39] Juha-Pekka Pellonpää. Covariant Phase Observables in Quantum Mechanics , 1999 .
[40] Reinhard F. Werner,et al. Quantum harmonic analysis on phase space , 1984 .
[41] G. Folland. Harmonic analysis in phase space , 1989 .