Multiple roles for ISWI in transcription, chromosome organization and DNA replication.

ISWI functions as the ATPase subunit of multiple chromatin-remodeling complexes. These complexes use the energy of ATP hydrolysis to slide nucleosomes and increase chromatin fluidity, thereby modulating the access of transcription factors and other regulatory proteins to DNA. Here we discuss recent progress toward understanding the biological functions of ISWI, with an emphasis on its roles in transcription, chromosome organization and DNA replication.

[1]  D. Shore,et al.  Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8. , 2002, Genetics.

[2]  R. Shiekhattar,et al.  A chromatin remodelling complex that loads cohesin onto human chromosomes , 2002, Nature.

[3]  J. Lucchesi,et al.  mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila , 1997, The EMBO journal.

[4]  G. Längst,et al.  ISWI is an ATP-dependent nucleosome remodeling factor. , 1999, Molecular cell.

[5]  M. Zofall,et al.  High-Resolution Mapping of Changes in Histone-DNA Contacts of Nucleosomes Remodeled by ISW2 , 2002, Molecular and Cellular Biology.

[6]  M. Scott,et al.  The Drosophila BRM complex facilitates global transcription by RNA polymerase II , 2002, The EMBO journal.

[7]  Ryuji Kobayashi,et al.  ACF, an ISWI-Containing and ATP-Utilizing Chromatin Assembly and Remodeling Factor , 1997, Cell.

[8]  Toshio Tsukiyama,et al.  ISWI, a member of the SWl2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor , 1995, Cell.

[9]  Carl Wu,et al.  ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor , 1994, Nature.

[10]  J. Palmer,et al.  Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. , 1999, Genes & development.

[11]  R. Poot,et al.  HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone‐fold proteins , 2000, The EMBO journal.

[12]  C. Peterson,et al.  Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. , 2002, Molecular cell.

[13]  O. Cohen-Fix,et al.  Chromosome cohesion: ring around the sisters? , 2002, Trends in biochemical sciences.

[14]  J. Mellor,et al.  In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. , 2001, Genes & development.

[15]  S. Linn,et al.  Human DNA Polymerase ε Colocalizes with Proliferating Cell Nuclear Antigen and DNA Replication Late, but Not Early, in S Phase* 210 , 2002, The Journal of Biological Chemistry.

[16]  P. Badenhorst,et al.  Biological functions of the ISWI chromatin remodeling complex NURF. , 2002, Genes & development.

[17]  F. Winston,et al.  Recent advances in understanding chromatin remodeling by Swi/Snf complexes. , 2003, Current opinion in genetics & development.

[18]  N. Proudfoot,et al.  A role for chromatin remodeling in transcriptional termination by RNA polymerase II. , 2002, Molecular cell.

[19]  R. Mantovani,et al.  NF-Y Associates with H3-H4 Tetramers and Octamers by Multiple Mechanisms , 1999, Molecular and Cellular Biology.

[20]  R. Kobayashi,et al.  ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. , 2002, Molecular biology of the cell.

[21]  A. Imbalzano,et al.  Unfolding heterochromatin for replication , 2002, Nature Genetics.

[22]  J. T. Kadonaga,et al.  Biochemical Analysis of Chromatin Containing RecombinantDrosophila Core Histones* , 2002, The Journal of Biological Chemistry.

[23]  C. Kooperberg,et al.  Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression , 2001, Molecular and Cellular Biology.

[24]  P. Varga-Weisz ATP-dependent chromatin remodeling factors: Nucleosome shufflers with many missions , 2001, Oncogene.

[25]  T. Gibson,et al.  The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. , 1996, Trends in biochemical sciences.

[26]  S. Kohlwein,et al.  Saccharomyces cerevisiae gene ISW2 encodes a microtubule‐interacting protein required for premeiotic DNA replication , 2000, Yeast.

[27]  G. Längst,et al.  Nucleosome Movement by CHRAC and ISWI without Disruption or trans-Displacement of the Histone Octamer , 1999, Cell.

[28]  T. Owen-Hughes,et al.  Evidence for DNA Translocation by the ISWI Chromatin-Remodeling Enzyme , 2003, Molecular and Cellular Biology.

[29]  H. Xiao,et al.  Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. , 2001, Molecular cell.

[30]  G. Längst,et al.  NoRC—a novel member of mammalian ISWI‐containing chromatin remodeling machines , 2001, The EMBO journal.

[31]  K. Nightingale,et al.  A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. , 2002, Nucleic acids research.

[32]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[33]  I. Grummt,et al.  The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription , 2002, The EMBO journal.

[34]  J. Workman,et al.  The complexity of chromatin remodeling and its links to cancer. , 2002, Biochimica et biophysica acta.

[35]  P. Becker,et al.  In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication , 1998, The EMBO journal.

[36]  S. Hirose,et al.  Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro , 1998, Molecular and Cellular Biology.

[37]  J. Tamkun,et al.  Modulation of ISWI function by site‐specific histone acetylation , 2002, EMBO reports.

[38]  C. Allis,et al.  Linking Global Histone Acetylation to the Transcription Enhancement of X-chromosomal Genes in Drosophila Males* , 2001, The Journal of Biological Chemistry.

[39]  P. Wade,et al.  WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci , 2002, The EMBO journal.

[40]  G. Orphanides,et al.  Requirement of RSF and FACT for transcription of chromatin templates in vitro. , 1998, Science.

[41]  G. Längst,et al.  Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. , 2001, Journal of cell science.

[42]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[43]  Masayoshi Iizuka,et al.  Functional consequences of histone modifications. , 2003, Current opinion in genetics & development.

[44]  C. Kooperberg,et al.  Yeast Isw1p Forms Two Separable Complexes In Vivo , 2003, Molecular and Cellular Biology.

[45]  Carl Wu,et al.  The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. , 2000, Molecular cell.

[46]  G. Mizuguchi,et al.  ATP-dependent Nucleosome Remodeling and Histone Hyperacetylation Synergistically Facilitate Transcription of Chromatin* , 2001, The Journal of Biological Chemistry.

[47]  B. Turner,et al.  Cellular Memory and the Histone Code , 2002, Cell.

[48]  T. Kohwi-Shigematsu,et al.  SATB1 targets chromatin remodelling to regulate genes over long distances , 2002, Nature.

[49]  M. Méchali,et al.  Expression of ISWI and its binding to chromatin during the cell cycle and early development. , 2002, Journal of structural biology.

[50]  A. Wolffe,et al.  Transcriptional regulation in the context of chromatin structure. , 2001, Essays in biochemistry.

[51]  R. Kingston,et al.  Cooperation between Complexes that Regulate Chromatin Structure and Transcription , 2002, Cell.

[52]  George M Church,et al.  The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p , 2000, Cell.

[53]  M. Wilm,et al.  Two histone fold proteins, CHRAC‐14 and CHRAC‐16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC) , 2000, The EMBO journal.

[54]  Mitzi I. Kuroda,et al.  Epigenetic Aspects of X-Chromosome Dosage Compensation , 2001, Science.

[55]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[56]  Carl Wu,et al.  Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Mantovani,et al.  Cloning and characterization of the histone-fold proteins YBL1 and YCL1. , 2000, Nucleic acids research.

[58]  Carl Wu,et al.  Purification and properties of an ATP-dependent nucleosome remodeling factor , 1995, Cell.

[59]  A. Wolffe,et al.  Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. , 2000, Science.

[60]  Ali Hamiche,et al.  ATP-Dependent Histone Octamer Sliding Mediated by the Chromatin Remodeling Complex NURF , 1999, Cell.

[61]  C. Müller,et al.  Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. , 2003, Molecular cell.

[62]  M. Beato,et al.  Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. , 1999, Molecular cell.

[63]  R. Poot,et al.  An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin , 2002, Nature Genetics.

[64]  W. Hörz,et al.  ATP-dependent nucleosome remodeling. , 2002, Annual review of biochemistry.

[65]  G. Mizuguchi,et al.  Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. , 1997, Molecular cell.

[66]  Matthias Mann,et al.  Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II , 1997, Nature.