Game Quantification Patterns

We analyse two basic approaches of extending classical logics with quantifiers interpreted via games: Propositional Game Logic of Parikh and Alternating-Time Temporal Logic of Alur, Henzinger, and Kupferman. Although the two approaches are historically remote and they incorporate operationally orthogonal paradigms, we trace the formalisms back to common foundations and argue that they share remarkable similarities in terms of expressive power.

[1]  D. Lutz,et al.  Paradoxes of Rationality: Theory of Metagames and Political Behavior , 1973 .

[2]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[3]  H. Moulin,et al.  Cores of effectivity functions and implementation theory , 1982 .

[4]  Joseph Y. Halpern,et al.  "Sometimes" and "not never" revisited: on branching versus linear time (preliminary report) , 1983, POPL '83.

[5]  Rohit Parikh,et al.  Propositional game logic , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  R. Parikh The logic of games and its applications , 1985 .

[7]  Zohar Manna,et al.  Temporal verification of reactive systems - safety , 1995 .

[8]  Jaakko Hintikka,et al.  Game-Theoretical Semantics , 1997, Handbook of Logic and Language.

[9]  Mark Steedman,et al.  In handbook of logic and language , 1997 .

[10]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[11]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[12]  Derick Wood,et al.  One-Unambiguous Regular Languages , 1998, Inf. Comput..

[13]  Moshe Y. Vardi Sometimes and Not Never Re-revisited: On Branching Versus Linear Time , 1998, CONCUR.

[14]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[15]  Marc Pauly,et al.  From Programs to Games: Invariance and Safety for Bisimulation , 2000, CSL.

[16]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[17]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[18]  Game Logic is Strong Enough for Parity Games , 2003, Stud Logica.

[19]  Dietmar Berwanger,et al.  The Variable Hierarchy of the μ-Calculus Is Strict , 2006, Theory of Computing Systems.

[20]  Valentin Goranko,et al.  Complete axiomatization and decidability of Alternating-time temporal logic , 2006, Theor. Comput. Sci..

[21]  Johan van Benthem,et al.  Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.

[22]  Wojciech Jamroga,et al.  Alternating-time temporal logics with irrevocable strategies , 2007, TARK '07.

[23]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[24]  Wiebe van der Hoek,et al.  Modal logic for games and information , 2007, Handbook of Modal Logic.

[25]  Nicolas Markey,et al.  ATL with Strategy Contexts and Bounded Memory , 2009, LFCS.