The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative

Adopting the experimental mathematics method combining complex variable function theory with computer aided drawing, this paper researches on the structural characteristic and the fission-evolution law of the generalized Mandelbrot set (generalized M set in short) perturbed by composing noise of additive and multiplicative, analyzes the effect of random perturbation to the generalized M set.

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  Ashish Negi,et al.  A new approach to dynamic noise on superior Mandelbrot set , 2008 .

[3]  Xingyuan Wang,et al.  Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..

[4]  Earl F. Glynn The evolution of the gingerbread man , 1991, Comput. Graph..

[5]  Fausto Montoya Vitini,et al.  Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..

[6]  Gonzalo Álvarez,et al.  External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..

[7]  Joshua C. Sasmor,et al.  Fractals for functions with rational exponent , 2004, Comput. Graph..

[8]  Xingyuan Wang,et al.  ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .

[9]  J. Argyris,et al.  On the Julia set of the perturbed Mandelbrot map , 2000 .

[10]  Ioannis Andreadis,et al.  On perturbations of the Mandelbrot map , 2000 .

[11]  J. Argyris,et al.  The influence of noise on the correlation dimension of chaotic attractors , 1998 .

[12]  Uday G. Gujar,et al.  Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..

[13]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[14]  C. Beck Physical meaning for Mandelbrot and Julia sets , 1999 .

[15]  William H. Press,et al.  Portable Random Number Generators , 1992 .

[16]  W. Liu,et al.  RESEARCH ON BROWNIAN MOVEMENT BASED ON GENERALIZED MANDELBROT–JULIA SETS FROM A CLASS COMPLEX MAPPING SYSTEM , 2007 .

[17]  Young Ik Kim,et al.  Accurate computation of component centers in the degree-n bifurcation set , 2004 .

[18]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[19]  J. Argyris,et al.  On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .

[20]  Xingyuan Wang,et al.  Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..