The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative
暂无分享,去创建一个
[1] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[2] Ashish Negi,et al. A new approach to dynamic noise on superior Mandelbrot set , 2008 .
[3] Xingyuan Wang,et al. Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..
[4] Earl F. Glynn. The evolution of the gingerbread man , 1991, Comput. Graph..
[5] Fausto Montoya Vitini,et al. Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..
[6] Gonzalo Álvarez,et al. External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..
[7] Joshua C. Sasmor,et al. Fractals for functions with rational exponent , 2004, Comput. Graph..
[8] Xingyuan Wang,et al. ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .
[9] J. Argyris,et al. On the Julia set of the perturbed Mandelbrot map , 2000 .
[10] Ioannis Andreadis,et al. On perturbations of the Mandelbrot map , 2000 .
[11] J. Argyris,et al. The influence of noise on the correlation dimension of chaotic attractors , 1998 .
[12] Uday G. Gujar,et al. Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..
[13] Pierre L'Ecuyer,et al. Efficient and portable combined random number generators , 1988, CACM.
[14] C. Beck. Physical meaning for Mandelbrot and Julia sets , 1999 .
[15] William H. Press,et al. Portable Random Number Generators , 1992 .
[16] W. Liu,et al. RESEARCH ON BROWNIAN MOVEMENT BASED ON GENERALIZED MANDELBROT–JULIA SETS FROM A CLASS COMPLEX MAPPING SYSTEM , 2007 .
[17] Young Ik Kim,et al. Accurate computation of component centers in the degree-n bifurcation set , 2004 .
[18] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[19] J. Argyris,et al. On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .
[20] Xingyuan Wang,et al. Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..