THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

We report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada–France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg 2 of sky to depths in the range g ∼ 23.5–24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of inner (interior to 3:2 mean-motion resonance [MMR]), main (between 3:2 and 2:1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40–47 AU) needs to be modeled with at least three components: the “hot” component with a wide inclination distribution and two “cold” components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (Hg) distribution than the other two components. With 95% confidence, there are 8000 +18001600 objects in the main belt with Hg 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component’s fraction drops rapidly with increasing Hg. Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The Hg 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two (95% confidence). We show how the CFEPS Survey Simulator can be used to compare a cosmogonic model for the orbital element distribution to the real Kuiper Belt.

[1]  A. Delsanti,et al.  Colors of Minor Bodies in the Outer Solar System ?;?? A statistical analysis , 2002 .

[2]  J. Kavelaars,et al.  DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING , 2010, 1009.3495.

[3]  K. Noll,et al.  Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005, astro-ph/0510130.

[4]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[5]  Brett James Gladman,et al.  A highly automated moving object detection package , 2004 .

[6]  G. Consolmagno,et al.  COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS , 2010, 1004.3059.

[7]  Chadwick A. Trujillo,et al.  Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey , 2001 .

[8]  Andrea Milani,et al.  Secular resonances from 2 to 50 AU , 1991 .

[9]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[10]  Michael E. Brown The Inclination Distribution of the Kuiper Belt , 2001 .

[11]  T. Loredo,et al.  The Kuiper Belt luminosity function from mR = 22 to 25 , 2006 .

[12]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[13]  Cesar I. Fuentes,et al.  A SUBARU ARCHIVAL SEARCH FOR FAINT TRANS-NEPTUNIAN OBJECTS , 2008 .

[14]  Jonathan P. Williams,et al.  THE CIRCUMSTELLAR DISK MASS DISTRIBUTION IN THE ORION TRAPEZIUM CLUSTER , 2009, 0902.0638.

[15]  B. Gladman,et al.  DISCOVERY OF THE FIRST RETROGRADE TRANSNEPTUNIAN OBJECT , 2009 .

[16]  S. Tegler,et al.  Extremely red Kuiper-belt objects in near-circular orbits beyond 40  AU , 2000, Nature.

[17]  Renu Malhotra,et al.  The origin of Pluto's peculiar orbit , 1995, Nature.

[18]  A. Doressoundiram,et al.  The CFEPS Kuiper Belt Survey: Strategy and presurvey results , 2006 .

[19]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[20]  The Edge of the Solar System , 2000, astro-ph/0011037.

[21]  G. Bernstein,et al.  Observational Limits on a Distant Cold Kuiper Belt , 2002 .

[22]  Darin Ragozzine,et al.  A collisional family of icy objects in the Kuiper belt , 2007, Nature.

[23]  Trujillo,et al.  Population of the Scattered Kuiper Belt. , 2000, The Astrophysical journal.

[24]  J. Bally,et al.  Can Photoevaporation Trigger Planetesimal Formation? , 2004, astro-ph/0411647.

[25]  R. Gomes,et al.  The origin of the Kuiper Belt high-inclination population , 2003 .

[26]  C. Trujillo,et al.  Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey , 1998 .

[27]  B. Gladman,et al.  Discovering and securing TNOs: the CFHTLS Ecliptic survey , 2003 .

[28]  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[29]  Chadwick A. Trujillo,et al.  The Radial Distribution of the Kuiper Belt , 2001 .

[30]  Xiaosheng Wan,et al.  The orbit evolution of 32 plutinos over 100 million year , 2001 .

[31]  Michael E. Brown,et al.  The Plane of the Kuiper Belt , 2003 .

[32]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[33]  Harold F. Levison,et al.  Origin and orbital distribution of the trans‐Neptunian scattered disc , 2004 .

[34]  Donald W. Sweeney,et al.  Large Synoptic Survey Telescope: From Science Drivers to Reference Design , 2008 .

[35]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[37]  Resonant and Secular Families of the Kuiper Belt , 2003 .

[38]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[39]  B. Gladman,et al.  Production of the Extended Scattered Disk by Rogue Planets , 2006 .

[40]  L. Wasserman,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. I. Description of Methods and Initial Results , 2002 .

[41]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .

[42]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[43]  D. Jewitt,et al.  The Mauna Kea-Cerro-Tololo (MKCT) Kuiper Belt and Centaur Survey , 1996 .

[44]  D. Trilling,et al.  UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT , 2009, 1005.1719.

[45]  A. Bieryla,et al.  SYSTEMATIC BIASES IN THE OBSERVED DISTRIBUTION OF KUIPER BELT OBJECT ORBITS , 2010 .

[46]  M. Carpino,et al.  Dynamics of Pluto , 1989 .

[47]  Robert A. Marcus,et al.  THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.

[48]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[49]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[50]  C. Trujillo,et al.  The Caltech Wide Area Sky Survey , 2003 .

[51]  Matthew J. Holman,et al.  A SUBARU PENCIL-BEAM SEARCH FOR mR ∼ 27 TRANS-NEPTUNIAN BODIES , 2008, 0809.4166.

[52]  Jonathan P. Williams,et al.  A SUBMILLIMETER ARRAY SURVEY OF PROTOPLANETARY DISKS IN THE ORION NEBULA CLUSTER , 2010, 1010.1962.

[53]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[54]  S. Tegler,et al.  Two distinct populations of Kuiper-belt objects , 1998, Nature.

[55]  E. Chiang A COLLISIONAL FAMILY IN THE CLASSICAL KUIPER BELT , 2002, astro-ph/0205275.

[56]  Megan E. Schwamb,et al.  The luminosity function of the hot and cold Kuiper belt populations , 2010, 1008.1058.

[57]  Harold F. Levison,et al.  The Dynamical Structure of the Kuiper Belt , 1995 .

[58]  M. Duncan,et al.  A disk of scattered icy objects and the origin of Jupiter-family comets. , 1997, Science.

[59]  M. Schwamb,et al.  PROPERTIES OF THE DISTANT KUIPER BELT: RESULTS FROM THE PALOMAR DISTANT SOLAR SYSTEM SURVEY , 2010, 1007.2954.

[60]  S. Tremaine,et al.  A Search for Slow-Moving Objects and the Luminosity Function of the Kuiper Belt , 1995 .

[61]  S. Ida,et al.  Sweeping Secular Resonances in the Kuiper Belt Caused by Depletion of the Solar Nebula , 2000 .

[62]  Alessandro Morbidelli,et al.  Chaotic Diffusion and the Origin of Comets from the 2/3 Resonance in the Kuiper Belt , 1997 .

[63]  The color of the Kuiper belt Core , 2004 .

[64]  T. Grav,et al.  Evidence for an Extended Scattered Disk , 2001 .

[65]  T. Mukai,et al.  Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation , 2007 .

[66]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[67]  Resonance occupation in the Kuiper belt: Case examples of the 5:2 and Trojan resonances , 2003, astro-ph/0301458.

[68]  Renu Malhotra,et al.  The origin of Pluto's orbit: implications for the , 1994, astro-ph/9504036.

[69]  S. Ida,et al.  P417 Evidence for early stellar encounters in the orbital distribution of Edgeworth-Kuiper Belt objects , 1999, astro-ph/9907217.

[70]  Renu Malhotra,et al.  The Phase Space Structure Near Neptune Resonances in the Kuiper Belt , 1995, astro-ph/9509141.

[71]  K. Tsiganis,et al.  Constructing the secular architecture of the solar system. I. The giant planets , 2009, 0909.1886.

[72]  Eugene A. Magnier,et al.  The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .

[73]  H. F. Levison,et al.  ON THE SIZE DEPENDENCE OF THE INCLINATION DISTRIBUTION OF THE MAIN KUIPER BELT , 2001 .

[74]  W. C. Fraser,et al.  THE SIZE DISTRIBUTION OF KUIPER BELT OBJECTS FOR D ≳ 10 km , 2008, 0810.2296.

[75]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[76]  R. Jedicke,et al.  The Spacewatch Wide-Area Survey for Bright Centaurs and Trans-Neptunian Objects , 2001 .

[77]  Harold F. Levison,et al.  The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System , 1999, Nature.