True velocity mapping using joint spectral and time domain optical coherence tomography

We present both axial and transverse components estimation using joint Spectral and Time domain Optical Coherence Tomography (STdOCT) method. Whereas axial component of velocity vector can be determined from the time-dependent Doppler beating frequency, the transverse component can be assessed by the analysis of the broadening of flow velocity profiles (Doppler bandwidth). This enables us to quantitatively determine the absolute value of the velocity vector. The accurate analyses are performed using well-defined flow of Intralipid solution in the glass capillary. This enables performing in vivo imaging and allows to calculate velocity maps of the retinal vasculature.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[3]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[4]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[5]  C. Luchini,et al.  [High speed]. , 1969, Revista De La Escuela De Odontologia, Universidad Nacional De Tucuman, Facultad De Medicina.

[6]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[7]  Theo Lasser,et al.  Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. , 2007, Journal of biomedical optics.

[8]  Quing Zhu,et al.  Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography. , 2003, Optics letters.

[9]  Neil Genzlinger A. and Q , 2006 .

[10]  W. Marsden I and J , 2012 .

[11]  Julius Pekar,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. , 2003, Optics express.

[12]  Yonghong He,et al.  Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography. , 2003, Optics letters.

[13]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[14]  M. Wojtkowski,et al.  Phase-resolved Doppler optical coherence tomography--limitations and improvements. , 2008, Optics letters.

[15]  S. Yun,et al.  Phase-resolved optical frequency domain imaging. , 2005, Optics express.

[16]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[17]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[18]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography: A Novel Technique for Cornea Imaging , 2006, Cornea.

[19]  David Huang,et al.  Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. , 2007, Optics letters.

[20]  Woonggyu Jung,et al.  Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. , 2007, Optics letters.

[21]  Toyohiko Yatagai,et al.  Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. , 2007, Optics express.