Validation of linear regression models

A new test is proposed in order to verify that a regression function, say g, has a prescribed (linear) parametric form. This procedure is based on the large sample behavior of an empirical L 2 -distance between g and the subspace U spanned by the regression functions to be verified. The asymptotic distribution of the test statistic is shown to be normal with parameters depending only on the variance of the observations and the L 2 -distance between the regression function g and the model space U. Based on this result, a test is proposed for the hypothesis that g is not in a preassigned L 2 -neighborhood of U, which allows the verification of the model U at a controlled type I error rate. The suggested procedure is very easy to apply because of its asymptotic normal law and the simple form of the test statistic. In particular, it does not require nonparametric estimators of the regression function and hence, the test does not depend on the subjective choice of smoothing parameters.

[1]  Takemi Yanagimoto,et al.  The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model , 1987 .

[2]  Shein-Chung Chow,et al.  Design and Analysis of Bioavailability and Bioequivalence Studies , 1994 .

[3]  Grace Wahba,et al.  Testing the (Parametric) Null Model Hypothesis in (Semiparametric) Partial and Generalized Spline Models , 1988 .

[4]  J. Diebolt A nonparametric test for the regression function : asymptotic theory , 1995 .

[5]  Jeffrey D. Hart,et al.  Testing the equality of two regression curves using linear smoothers , 1991 .

[6]  J. Sacks,et al.  Designs for Regression Problems with Correlated Errors III , 1966 .

[7]  Thomas A. Severini,et al.  Diagnostics for Assessing Regression Models , 1991 .

[8]  A Simple Goodness-of-fit Test for Linear Models Under a Random Design Assumption , 1998 .

[9]  E. R. Shillington,et al.  Testing lack of fit in regression without replication , 1979 .

[10]  F. Brodeau Test for the choice of approximative models in nonlinear regression when the variance is unknown , 1993 .

[11]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[12]  Anthony C. Davison,et al.  Regression model diagnostics , 1992 .

[13]  Peter Hall,et al.  Bootstrap test for difference between means in nonparametric regression , 1990 .

[14]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[15]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[16]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[17]  ten Jm Jan Vregelaar Note on the convergence to normality of quadratic forms in independent variables. , 1964 .

[18]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[19]  S. Zwanzig The choice of approximative models in nonlinear regression , 1980 .

[20]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[21]  James Stephen Marron,et al.  Semiparametric Comparison of Regression Curves , 1990 .

[22]  J. Hartigan,et al.  An omnibus test for departures from constant mean , 1990 .

[23]  Hans-Georg Müller,et al.  Goodness-of-fit diagnostics for regression models , 1992 .

[24]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[25]  Steven Orey,et al.  A central limit theorem for $m$-dependent random variables , 1958 .

[26]  D. Mandallaz,et al.  Comparison of different methods for decision-making in bioequivalence assessment. , 1981, Biometrics.

[27]  S. Sheather,et al.  Robust Estimation and Testing , 1990 .

[28]  W. S. Meisel,et al.  General Estimates of the Intrinsic Variability of Data in Nonlinear Regression Models , 1976 .

[29]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[30]  Shein-Chung Chow,et al.  Design and Analysis of Bioavailability and Bioequivalence Studies , 1994 .

[31]  J. Marron,et al.  On variance estimation in nonparametric regression , 1990 .

[32]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[33]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[34]  James W. Neill,et al.  Testing Linear Regression Function Adequacy without Replication , 1985 .

[35]  James G. MacKinnon,et al.  Model Specification Tests and Artificial Regressions , 1992 .

[36]  Miguel A. Delgado Testing the equality of nonparametric regression curves , 1992 .