Curved filaments of Aulacoseira complex as ecological indicators in the Pearl River, China

[1]  N. Wu,et al.  Spatio-temporal patterns and predictions of size-fractionated chlorophyll a in a large subtropical river, China , 2020 .

[2]  Amir Mosavi,et al.  Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms , 2020, Engineering Applications of Computational Fluid Mechanics.

[3]  I. Gregory‐Eaves,et al.  Environmental and spatial drivers of diatom assemblages in the water column and surface sediment of tropical reservoirs , 2019, Journal of Paleolimnology.

[4]  S. McGowan,et al.  Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam) , 2019, Plant Ecology and Evolution.

[5]  Lunhui Lu,et al.  Turbulence exerts nutrients uptake and assimilation of bloom-forming Dolichospermum through modulating morphological traits: Field and chemostat culture studies. , 2019, The Science of the total environment.

[6]  Jianhua Li,et al.  Driving Factors and Dynamics of Phytoplankton Community and Functional Groups in an Estuary Reservoir in the Yangtze River, China , 2019, Water.

[7]  M. Varol Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables , 2019, Environmental Science and Pollution Research.

[8]  R. Sidle,et al.  Evaluating Factors for Controlling Sediment Connectivity of Landslide Materials: A Flume Experiment , 2018, Water.

[9]  Amir Mosavi,et al.  Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters , 2018, Engineering Applications of Computational Fluid Mechanics.

[10]  M. Cantonati,et al.  Can the presence of curved forms of the diatom Aulacoseira ambigua in the Nile (Egypt) and Vaal (South Africa) Rivers be ascribed to similar water quality conditions? , 2018, African Journal of Aquatic Science.

[11]  Gang Li,et al.  Ectopic expression of StCBF1and ScCBF1 have different functions in response to freezing and drought stresses in Arabidopsis. , 2018, Plant science : an international journal of experimental plant biology.

[12]  Kwok-wing Chau,et al.  Effect of river flow on the quality of estuarine and coastal waters using machine learning models , 2018 .

[13]  S. Lek,et al.  Morphology of Aulacoseira filaments as indicator of the aquatic environment in a large subtropical river: The Pearl River, China , 2017 .

[14]  Luigi Naselli-Flores,et al.  Larger cell or colony size in winter, smaller in summer – a pattern shared by many species of Lake Kinneret phytoplankton , 2017 .

[15]  S. Janse van Vuuren,et al.  First record of a spiral form of Aulacoseira, A. ambigua f. japonica (F.Meister) Tuji & D.M.Williams, in South African fresh waters , 2016 .

[16]  A. Long,et al.  Characteristics of Phytoplankton Biomass, Primary Production and Community Structure in the Modaomen Channel, Pearl River Estuary, with Special Reference to the Influence of Saltwater Intrusion during Neap and Spring Tides , 2016, PloS one.

[17]  C. Bicudo,et al.  Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil , 2016 .

[18]  S. Lek,et al.  Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system , 2016 .

[19]  Chao Wang,et al.  Exploring temporal trend of morphological variability of a dominant diatom in response to environmental factors in a large subtropical river , 2015, Ecol. Informatics.

[20]  E. Marañón Cell size as a key determinant of phytoplankton metabolism and community structure. , 2015, Annual review of marine science.

[21]  Priscila Izabel Tremarin,et al.  Variação morfológica e distribuição da diatomácea de água doce Aulacoseira ambigua (Grunow) Simonsen em ambientes continentais brasileiros. , 2013 .

[22]  T. V. Ludwig,et al.  Morphological variation and distribution of the freshwater diatom Aulacoseira ambigua ( Grunow ) Simonsen in Brazilian continental environments , 2013 .

[23]  王超 Wang Chao,et al.  Temporal and spatial pattern of the phytoplankton biomass in the Pearl River Delta , 2013 .

[24]  Peter A. Jumars,et al.  Quantifying diatom aspirations: Mechanical properties of chain‐forming species , 2012 .

[25]  K. T. Kiss,et al.  Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution , 2012 .

[26]  Andrew M. Farrell,et al.  Seasonality of Aulacoseira ambigua abundance and filament length : biogeochemical implications , 2012 .

[27]  S. Lek,et al.  Population ecology ofAulacoseira granulatain Xijiang River , 2012 .

[28]  Luigi Naselli-Flores,et al.  Invited Review - Fight on Plankton! or, Phytoplankton Shape and Size as Adaptive Tools to Get Ahead in the Struggle for Life , 2011 .

[29]  Lizhe Cai,et al.  Coastal and marine environmental issues in the Pearl River Delta region, China , 2010 .

[30]  Zini Lai,et al.  Seasonal variations of Aulacoseira granulata population abundance in the Pearl River Estuary , 2009 .

[31]  Siddharth V. Patwardhan,et al.  Some Observations of Diatoms Under Turbulence , 2009 .

[32]  Robert Jan Stevenson,et al.  Morphotype variations in subfossil diatom species of Aulacoseira in 24 Michigan Lakes, USA , 2009 .

[33]  M. Sakirko,et al.  The Change in the Length of Colonies of the Planktonic Diatom Aulacoseira baicalensis in Various Stages of the Annual Cycle in Lake Baikal , 2007 .

[34]  J. Padisák,et al.  Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study , 2003, Hydrobiologia.

[35]  N. A. Petrova Seasonality of Melosira-plankton of the great northern lakes , 1986, Hydrobiologia.

[36]  F. Sinada,et al.  A quantitative study of the phytoplankton in the Blue and White Niles at Khartoum , 1984, Hydrobiologia.

[37]  H. Shear,et al.  Some aspects of the ecology of Melosira spp. in Ontario Lakes , 1976, Hydrobiologia.

[38]  C. Gibson,et al.  Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology , 2003 .

[39]  S. Passy Environmental randomness underlies morphological complexity of colonial diatoms , 2002 .

[40]  I. O'farrell,et al.  Morphological variability of Aulacoseira granulata (Ehr.) Simonsen (Bacillariophyceae) in the Lower Paraná River (Argentina) , 2001, Limnology.

[41]  J. Turkia,et al.  Size variations of planktonic Aulacoseira Thwaites (Diatomae) in water and in sediment from Finnish lakes of varying trophic state , 1999 .

[42]  M. Pahlow,et al.  Impact of cell shape and chain formation on nutrient acquisition by marine diatoms , 1997 .

[43]  G. Hötzel,et al.  Population dynamics of Aulascoseira granulata (EHR.) Simonson (Bacillariophyceae, Centrales), the dominant alga in the Murray River, Australia , 1996 .

[44]  D. Sherbakov,et al.  On the morphological variability of Aulacoseira baicalensis and Aulacoseira islandica (Bacillariophyta) of Lake Baikal, Russia , 1996 .

[45]  Sergi Sabater,et al.  Ecology and morphological variability of Aulacoseira granulata (Bacillariophyceae) in Spanish reservoirs , 1995 .

[46]  C. Reynolds,et al.  Variability in sinking rate of the freshwater diatom Asterionella formosa: the influence of colony morphology , 1988 .

[47]  A. Walsby,et al.  Sinking and Floating , 1981 .

[48]  A. Walsby,et al.  The relative form resistance of straight and helical blue-green algal filaments , 1979 .

[49]  F. R. Trainor,et al.  SCENEDESMUS MORPHOLOGY AND FLOTATION 1 , 1972 .

[50]  T. Smayda,et al.  EXPERIMENTAL OBSERVATIONS ON THE FLOTATION OF MARINE DIATOMS. I. THALASSIOSIRA CF. NANA, THALASSIOSIRA ROTULA AND NITZSCHIA SERIATA , 1965 .