Discrete recursive algorithm for estimation of non-stationary noise in deep-submicron integrated circuits

This paper reports a new recursive algorithm for efficient estimation of the noise content in time-domain noise analysis of non-linear dynamic integrated circuits with arbitrary excitations. Statistical simulation of specific circuit fabricated in 65 nm CMOS process shows that the proposed algorithm offers accurate and efficient solution.

[1]  Kishore Singhal,et al.  Computer Methods for Circuit Analysis and Design , 1983 .

[2]  Vance L. Martin,et al.  On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations * , 2003 .

[3]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[4]  Amir Zjajo,et al.  Digitally programmable continuous-time biquad filter in 65-nm CMOS , 2009, 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[5]  Michael Sørensen,et al.  A Review of Some Aspects of Asymptotic Likelihood Theory for Stochastic Processes , 1994 .

[6]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[7]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Vinita Vasudevan,et al.  A time-domain technique for computation of noise-spectral density in linear and nonlinear time-varying circuits , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Jaijeet Roychowdhury,et al.  Reduced-order modeling of time-varying systems , 1999 .

[10]  Alper Demir,et al.  Time-Domain Non-Monte Carlo Noise Simulation , 1998 .

[11]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[12]  Alper Demir,et al.  Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations , 1994, ICCAD 1994.