Optical Coherence Tomographic Analysis of Retina in Retinitis Pigmentosa Patients

Retinitis pigmentosa (RP) is a progressive inherited retinal disease characterized by nyctalopia, visual field constriction, and reduced full-field electroretinograms. The progressive loss of photoreceptors leads to vision loss at the end stage of RP. The prevalence of RP is approximately 1/4,000. Since it is one of the major causes of visual impairment worldwide, morphological and functional assessments are useful for estimating the retinal structure and function in RP. Optical coherence tomography (OCT) is a well-established method of examining retinal structure in situ, and the obtained images by OCT help to analyze morphological abnormalities. Changes revealed by OCT have provided insights into the pathology of RP as well as for predicting the prognosis of RP. In this review, we present the typical morphological changes in RP and their relationships with visual function in eyes with RP.

[1]  Hiroshi Murata,et al.  Estimating the Usefulness of Humphrey Perimetry Gaze Tracking for Evaluating Structure-Function Relationship in Glaucoma. , 2015, Investigative ophthalmology & visual science.

[2]  M. Tetikoğlu,et al.  Analysis of the Retinal Nerve Fiber Layer in Retinitis Pigmentosa Using Optic Coherence Tomography , 2015, Journal of ophthalmology.

[3]  M. Moschos,et al.  Intravitreal aflibercept (Eylea) injection for cystoid macular edema secondary to retinitis pigmentosa - a first case report and short review of the literature , 2015, BMC Ophthalmology.

[4]  Dong Myung Kim,et al.  Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect , 2015, Acta ophthalmologica.

[5]  G. Rebolleda,et al.  Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. , 2015, Investigative ophthalmology & visual science.

[6]  Dong Myung Kim,et al.  Severity‐dependent association between ganglion cell inner plexiform layer thickness and macular mean sensitivity in open‐angle glaucoma , 2014, Acta ophthalmologica.

[7]  S. Sadda,et al.  Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. , 2014, Ophthalmology.

[8]  Na Rae Kim,et al.  Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma. , 2014, Investigative ophthalmology & visual science.

[9]  Ken Ogino,et al.  PREVALENCE AND SPATIAL DISTRIBUTION OF CYSTOID SPACES IN RETINITIS PIGMENTOSA: Investigation With Spectral Domain Optical Coherence Tomography , 2014, Retina.

[10]  Masayuki Hata,et al.  Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa. , 2014, Clinical ophthalmology.

[11]  P. Melillo,et al.  Macular abnormalities in Italian patients with retinitis pigmentosa , 2014, British Journal of Ophthalmology.

[12]  E. Campos,et al.  ET-1 plasma levels, choroidal thickness and multifocal electroretinogram in retinitis pigmentosa. , 2013, Life Science.

[13]  H. Yu,et al.  The Structure-Function Relationship between Macular Morphology and Visual Function Analyzed by Optical Coherence Tomography in Retinitis Pigmentosa , 2013, Journal of ophthalmology.

[14]  M. Moschos,et al.  Correlation between optical coherence tomography and multifocal electroretinogram findings with visual acuity in retinitis pigmentosa , 2013, Clinical ophthalmology.

[15]  L. Pablo,et al.  Influence of cataract surgery on optical coherence tomography and neurophysiology measurements in patients with retinitis pigmentosa. , 2013, American journal of ophthalmology.

[16]  Ahmad A. Alwassia,et al.  Analysis of the morphology and vascular layers of the choroid in retinitis pigmentosa using spectral-domain OCT. , 2013, Ophthalmic surgery, lasers & imaging retina.

[17]  L. Ayton,et al.  Choroidal thickness profiles in retinitis pigmentosa , 2013, Clinical & experimental ophthalmology.

[18]  A. Hagiwara,et al.  Photoreceptor Impairment and Restoration on Optical Coherence Tomographic Image , 2013, Journal of ophthalmology.

[19]  N. Yoshimura,et al.  Longitudinal analysis of the peripapillary retinal nerve fiber layer thinning in patients with retinitis pigmentosa , 2013, Eye.

[20]  J. Schuman,et al.  Cystoid Macular Edema in Retinitis Pigmentosa Patients without Associated Macular Thickening , 2013, Seminars in ophthalmology.

[21]  K. Xue,et al.  Retinal Nerve Fiber Layer Analysis with Scanning Laser Polarimetry and RTVue-OCT in Patients of Retinitis Pigmentosa , 2012, Ophthalmologica.

[22]  Y. Hwang,et al.  Optic Nerve Head, Retinal Nerve Fiber Layer, and Macular Thickness Measurements in Young Patients with Retinitis Pigmentosa , 2012, Current eye research.

[23]  Danjie Li,et al.  Inverse pattern of photoreceptor abnormalities in retinitis pigmentosa and cone–rod dystrophy , 2012, Documenta Ophthalmologica.

[24]  M. Inoue,et al.  Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. , 2012, Ophthalmology.

[25]  J. J. McAnany,et al.  EVALUATION OF RETINAL NERVE FIBER LAYER THICKNESS IN PATIENTS WITH RETINITIS PIGMENTOSA USING SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2012, Retina.

[26]  D. Hood,et al.  Relationships among multifocal electroretinogram amplitude, visual field sensitivity, and SD-OCT receptor layer thicknesses in patients with retinitis pigmentosa. , 2012, Investigative ophthalmology & visual science.

[27]  G. Holder,et al.  The structure and function of the macula in patients with advanced retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[28]  C. Curcio,et al.  ANATOMICAL CORRELATES TO THE BANDS SEEN IN THE OUTER RETINA BY OPTICAL COHERENCE TOMOGRAPHY: Literature Review and Model , 2011, Retina.

[29]  T. Oshitari,et al.  Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. , 2011, American journal of ophthalmology.

[30]  K. Tsunoda,et al.  Selective abnormality of cone outer segment tip line in acute zonal occult outer retinopathy as observed by spectral-domain optical coherence tomography. , 2011, Archives of ophthalmology.

[31]  Gerald McGwin,et al.  Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. , 2011, Investigative ophthalmology & visual science.

[32]  T. Matsuo,et al.  Optical coherence tomographic parameters as objective signs for visual acuity in patients with retinitis pigmentosa, future candidates for retinal prostheses , 2011, Journal of Artificial Organs.

[33]  Donald C. Hood,et al.  Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa , 2011, Biomedical optics express.

[34]  Tien Yin Wong,et al.  Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. , 2011, Ophthalmology.

[35]  A. Hagiwara,et al.  Macular abnormalities in patients with retinitis pigmentosa: prevalence on OCT examination and outcomes of vitreoretinal surgery , 2011, Acta ophthalmologica.

[36]  Donald C Hood,et al.  The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[37]  S. Wolf,et al.  Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. , 2010, Investigative ophthalmology & visual science.

[38]  Donald C Hood,et al.  A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[39]  T. Wakabayashi,et al.  Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa , 2009, Acta ophthalmologica.

[40]  Magali Saint-Geniez,et al.  An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris , 2009, Proceedings of the National Academy of Sciences.

[41]  R. Anderson,et al.  The association between multifocal electroretinograms and OCT retinal thickness in retinitis pigmentosa patients with good visual acuity , 2009, Eye.

[42]  K. A. Townsend,et al.  Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. , 2009, Ophthalmology.

[43]  Xian Zhang,et al.  Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. , 2009, Investigative ophthalmology & visual science.

[44]  Matthias Bolz,et al.  Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. , 2009, Ophthalmology.

[45]  N. Yoshimura,et al.  Retinal nerve fiber layer thickness in patients with retinitis pigmentosa , 2009, Eye.

[46]  S. Kishi,et al.  Restored photoreceptor outer segment and visual recovery after macular hole closure. , 2009, American journal of ophthalmology.

[47]  Y Mitamura,et al.  Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa , 2009, Eye.

[48]  A. Alm,et al.  Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT , 2008, British Journal of Ophthalmology.

[49]  M. Sandberg,et al.  Visual acuity is related to parafoveal retinal thickness in patients with retinitis pigmentosa and macular cysts. , 2008, Investigative ophthalmology & visual science.

[50]  G. Fishman,et al.  The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography , 2008, British Journal of Ophthalmology.

[51]  M. Gillies,et al.  A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. , 2008, Investigative ophthalmology & visual science.

[52]  G. Fishman,et al.  Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. , 2008, Investigative ophthalmology & visual science.

[53]  M. Kondo,et al.  Correlation between macular volume and focal macular electroretinogram in patients with retinitis pigmentosa. , 2008, Investigative ophthalmology & visual science.

[54]  T. Yatagai,et al.  Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. , 2007, Ophthalmology.

[55]  G. Fishman,et al.  Retinal nerve fiber layer defects in RP patients. , 2007, Investigative ophthalmology & visual science.

[56]  A. J. Roman,et al.  Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. , 2007, Investigative ophthalmology & visual science.

[57]  Douglas R. Anderson,et al.  Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. , 2007, Ophthalmology.

[58]  M. Tanito,et al.  Delayed loss of cone and remaining rod photoreceptor cells due to impairment of choroidal circulation after acute light exposure in rats. , 2007, Investigative ophthalmology & visual science.

[59]  G. Fishman,et al.  RETINAL THICKNESS AND VISUAL THRESHOLDS MEASURED IN PATIENTS WITH RETINITIS PIGMENTOSA , 2007, Retina.

[60]  T. Matsuo,et al.  Visual acuity and perimacular retinal layers detected by optical coherence tomography in patients with retinitis pigmentosa , 2007, British Journal of Ophthalmology.

[61]  Wolfgang Drexler,et al.  Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. , 2006, American journal of ophthalmology.

[62]  G. Acland,et al.  A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. , 2006, Investigative ophthalmology & visual science.

[63]  M. Sandberg,et al.  The association between visual acuity and central retinal thickness in retinitis pigmentosa. , 2005, Investigative ophthalmology & visual science.

[64]  Peter Wiedemann,et al.  Pathomechanisms of Cystoid Macular Edema , 2004, Ophthalmic Research.

[65]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[66]  A. Milam,et al.  Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. , 2003, Experimental eye research.

[67]  E. Vingolo,et al.  Clinical pathogenesis of macular holes in patients affected by retinitis pigmentosa. , 2002, European review for medical and pharmacological sciences.

[68]  J. Marshall,et al.  Hydraulic conductivity of fixed retinal tissue after sequential excimer laser ablation: barriers limiting fluid distribution and implications for cystoid macular edema. , 2001, Archives of ophthalmology.

[69]  A. Milam,et al.  Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa. , 2000, Molecular vision.

[70]  A. Milam,et al.  Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. , 2000, American journal of ophthalmology.

[71]  Z. Chen,et al.  [Optical coherence tomography of macular holes]. , 1999, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[72]  H. Hirakawa,et al.  Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa. , 1999, American journal of ophthalmology.

[73]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[74]  E. Lütjen-Drecoll,et al.  Morphological changes of retinal pigment epithelium and choroid in rd-mice. , 1999, Experimental eye research.

[75]  A. Milam,et al.  Histopathology of the human retina in retinitis pigmentosa. , 1998, Progress in retinal and eye research.

[76]  E Reichel,et al.  Topography of diabetic macular edema with optical coherence tomography. , 1998, Ophthalmology.

[77]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[78]  A. Cideciyan,et al.  Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. , 1996, Investigative ophthalmology & visual science.

[79]  A. Milam,et al.  Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. , 1996, Investigative ophthalmology & visual science.

[80]  Eric A. Swanson,et al.  Optical Coherence Tomography of Macular Holes , 1996 .

[81]  Zy Li,et al.  Rod photoreceptor neurite sprouting in retinitis pigmentosa , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  E. Berson,et al.  Ultrastructural findings in an autopsy eye from a patient with Usher's syndrome type II. , 1992, American journal of ophthalmology.

[83]  Demichelis,et al.  Evaluation of the , 1992, Physical review. B, Condensed matter.

[84]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[85]  J. Heckenlively,et al.  Nerve fibre layer loss in diseases of the outer retinal layer. , 1987, The British journal of ophthalmology.

[86]  I. Klock,et al.  Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. , 1985, Investigative ophthalmology & visual science.

[87]  V. Reppucci,et al.  RPE destruction causes choriocapillary atrophy. , 1984, Investigative ophthalmology & visual science.

[88]  M. Tso,et al.  Pathology of cystoid macular edema. , 1982, Ophthalmology.

[89]  E. Berson,et al.  Sex-linked retinitis pigmentosa: ultrastructure of photoreceptors and pigment epithelium. , 1979, Investigative ophthalmology & visual science.

[90]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[91]  A. P. Ferry,et al.  Central areolar choroidal dystrophy. , 1972, Archives of ophthalmology.