Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces

We prove that the covering radius of an N  -point subset XNXN of the unit sphere Sd⊂Rd+1Sd⊂Rd+1 is bounded above by a power of the worst-case error for equal weight cubature 1N∑x∈XNf(x)≈∫Sdfdσd for functions in the Sobolev space Wps(Sd), where σdσd denotes normalized area measure on SdSd. These bounds are close to optimal when s is close to d/pd/p. Our study of the worst-case error along with results of Brandolini et al. motivate the definition of Quasi-Monte Carlo (QMC) design sequences for Wps(Sd), which have previously been introduced only in the Hilbert space setting p=2p=2. We say that a sequence (XN)(XN) of N  -point configurations is a QMC-design sequence for Wps(Sd) with s>d/ps>d/p provided the worst-case equal weight cubature error for XNXN has order N−s/dN−s/d as N→∞N→∞, a property that holds, in particular, for a sequence of spherical t  -designs in which each design has order tdtd points. For the case p=1p=1, we deduce that any QMC-design sequence (XN)(XN) for W1s(Sd) with s>ds>d has the optimal covering property; i.e., the covering radius of XNXN has order N−1/dN−1/d as N→∞N→∞. A significant portion of our effort is devoted to the formulation of the worst-case error in terms of a Bessel kernel, and showing that this kernel satisfies a Bernstein type inequality involving the mesh ratio of XNXN. As a consequence we prove that any QMC-design sequence for Wps(Sd) is also a QMC-design sequence for Wp′s(Sd) for all 1≤p s′>d/ps>s′>d/p.

[1]  Hubert Berens,et al.  Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .

[2]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[3]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[4]  Ian H. Sloan,et al.  Optimal lower bounds for cubature error on the sphere S2 , 2005, J. Complex..

[5]  V. Yudin,et al.  Covering a sphere and extremal properties of orthogonal polynomials , 1995 .

[6]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[7]  Johann S. Brauchart,et al.  Numerical Integration over Spheres of Arbitrary Dimension , 2007 .

[8]  J. Humphrey,et al.  Some Nonlinear Problems , 2015 .

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  Pencho Petrushev,et al.  Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .

[11]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[12]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[13]  Quoc Thong Le Gia,et al.  Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere , 2006, Numerische Mathematik.

[14]  Jiaxin Hu,et al.  Generalized Bessel and Riesz Potentials on Metric Measure Spaces , 2009 .

[15]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[16]  C. Choirat,et al.  Quadrature rules and distribution of points on manifolds , 2010, 1012.5409.

[17]  Ian H. Sloan,et al.  Worst-case errors in a Sobolev space setting for cubature over the sphere $S^2$ , 2005 .

[18]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[19]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[20]  Hrushikesh Narhar Mhaskar,et al.  L BERNSTEIN ESTIMATES AND APPROXIMATION BY SPHERICAL BASIS FUNCTIONS , 2010 .

[21]  Manfred Reimer,et al.  Hyperinterpolation on the Sphere at the Minimal Projection Order , 2000 .

[22]  Xingping Sun,et al.  LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.

[23]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[24]  Ian H. Sloan,et al.  QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..

[25]  Kerstin Hesse,et al.  A lower bound for the worst-case cubature error on spheres of arbitrary dimension , 2006, Numerische Mathematik.

[26]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[27]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[28]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[29]  Kh. P. Rustamov Equivalence of K-functional and modulus of smoothness of functions on the sphere , 1992 .

[30]  Andriy Bondarenko,et al.  Well-Separated Spherical Designs , 2013, 1303.5991.