Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces
暂无分享,去创建一个
Josef Dick | Ian H. Sloan | Johann S. Brauchart | Robert S. Womersley | Edward B. Saff | Yu Guang Wang
[1] Hubert Berens,et al. Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .
[2] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[3] Andriy Bondarenko,et al. Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.
[4] Ian H. Sloan,et al. Optimal lower bounds for cubature error on the sphere S2 , 2005, J. Complex..
[5] V. Yudin,et al. Covering a sphere and extremal properties of orthogonal polynomials , 1995 .
[6] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[7] Johann S. Brauchart,et al. Numerical Integration over Spheres of Arbitrary Dimension , 2007 .
[8] J. Humphrey,et al. Some Nonlinear Problems , 2015 .
[9] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[10] Pencho Petrushev,et al. Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .
[11] Thierry Aubin,et al. Some Nonlinear Problems in Riemannian Geometry , 1998 .
[12] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[13] Quoc Thong Le Gia,et al. Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere , 2006, Numerische Mathematik.
[14] Jiaxin Hu,et al. Generalized Bessel and Riesz Potentials on Metric Measure Spaces , 2009 .
[15] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[16] C. Choirat,et al. Quadrature rules and distribution of points on manifolds , 2010, 1012.5409.
[17] Ian H. Sloan,et al. Worst-case errors in a Sobolev space setting for cubature over the sphere $S^2$ , 2005 .
[18] Pencho Petrushev,et al. Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..
[19] R. Strichartz. Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .
[20] Hrushikesh Narhar Mhaskar,et al. L BERNSTEIN ESTIMATES AND APPROXIMATION BY SPHERICAL BASIS FUNCTIONS , 2010 .
[21] Manfred Reimer,et al. Hyperinterpolation on the Sphere at the Minimal Projection Order , 2000 .
[22] Xingping Sun,et al. LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.
[23] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[24] Ian H. Sloan,et al. QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..
[25] Kerstin Hesse,et al. A lower bound for the worst-case cubature error on spheres of arbitrary dimension , 2006, Numerische Mathematik.
[26] Johann S. Brauchart,et al. Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..
[27] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[28] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[29] Kh. P. Rustamov. Equivalence of K-functional and modulus of smoothness of functions on the sphere , 1992 .
[30] Andriy Bondarenko,et al. Well-Separated Spherical Designs , 2013, 1303.5991.