Fast iterative solvers for fractional dierential equations

Fractional dierential equations play an important role in science and technology. Many problems can be cast using both fractional time and spatial derivatives. In order to accurately simulate natural phenomena using this technology one needs ne spatial and temporal discretizations. This leads to large-scale linear systems or matrix equations, especially whenever more than one space dimension is considered. The discretization of fractional dierential equations typically involves dense matrices with a Toeplitz structure. We combine the fast evaluation of Toeplitz matrices and their circulant preconditioners with state-of-the-art linear matrix equation solvers to eciently solve these problems, both in terms of CPU time and memory requirements. Numerical experiments on typical dierential problems with fractional derivatives in both space and time showing the eectiveness of the approaches are reported.

[1]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[2]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[3]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[4]  Ivan V. Oseledets,et al.  DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..

[5]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[6]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[7]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[8]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[9]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[10]  H Lippert,et al.  How preservation time changes the linear viscoelastic properties of porcine liver. , 2013, Biorheology.

[11]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[12]  Charles Tadjeran,et al.  Finite di$erence approximations for fractional advection-dispersion &ow equations , 2004 .

[13]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[14]  Qianqian Yang,et al.  A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation , 2013, Comput. Math. Appl..

[15]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[16]  Mingkui Chen On the solution of circulant linear systems , 1987 .

[17]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[18]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[19]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[20]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[21]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[22]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[23]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[24]  Valeria Simoncini,et al.  Convergence analysis of the extended Krylov subspace method for the Lyapunov equation , 2011, Numerische Mathematik.

[25]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[26]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[27]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[28]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[29]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[30]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[31]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[32]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[33]  M. Bezerra,et al.  Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology , 2009 .

[34]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[35]  Pu Yi-fei Application of Fractional Differential Approach to Digital Image Processing , 2007 .

[36]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[37]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[38]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[39]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[40]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[41]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[42]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[43]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[44]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[45]  James Durbin,et al.  The fitting of time series models , 1960 .

[46]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[47]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[48]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[49]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[50]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[51]  Bernhard Beckermann,et al.  An Error Analysis for Rational Galerkin Projection Applied to the Sylvester Equation , 2011, SIAM J. Numer. Anal..

[52]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[53]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[54]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[55]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[56]  Martin Stoll,et al.  A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..

[57]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[58]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .