A Hybrid Lagrangian-Eulerian Method for Topology Optimization

We propose LETO, a new hybrid Lagrangian-Eulerian method for topology optimization. At the heart of LETO lies in a hybrid particle-grid Material Point Method (MPM) to solve for elastic force equilibrium. LETO transfers density information from freely movable Lagrangian carrier particles to a fixed set of Eulerian quadrature points. The quadrature points act as MPM particles embedded in a lower-resolution grid and enable sub-cell resolution of intricate structures with a reduced computational cost. By treating both densities and positions of the carrier particles as optimization variables, LETO reparameterizes the Eulerian solution space of topology optimization in a Lagrangian view. LETO also unifies the treatment for both linear and non-linear elastic materials. In the non-linear deformation regime, the resulting scheme naturally permits large deformation and buckling behaviors. Additionally, LETO explores contact-awareness during optimization by incorporating a fictitious domain-based contact model into the static equilibrium solver, resulting in the discovery of novel structures. We conduct an extensive set of experiments. By comparing against a representative Eulerian scheme, LETO's objective achieves an average quantitative improvement of 20% (up to 40%) in 3D and 2% in 2D (up to 12%). Qualitatively, LETO also discovers novel non-linear functional structures and conducts self-contact-aware structural explorations.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[3]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[4]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[5]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[6]  H. Gea,et al.  Topology optimization of nonlinear structures , 2004 .

[7]  Johannes T. B. Overvelde,et al.  The Moving Node Approach in Topology Optimization , 2012 .

[8]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[9]  Chenfanfu Jiang,et al.  Investigating the release and flow of snow avalanches at the slope-scale using a unified model based on the material point method , 2019 .

[10]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[11]  Pierre Alart,et al.  Self‐contact and fictitious domain using a difference convex approach , 2008 .

[12]  P. Wriggers Finite element algorithms for contact problems , 1995 .

[13]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[14]  Jakob Andreas Bærentzen,et al.  Topology-adaptive interface tracking using the deformable simplicial complex , 2012, TOGS.

[15]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[16]  SigmundOle,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011 .

[17]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[18]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[19]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[20]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[21]  H. Gea,et al.  Topology optimization of structures with geometrical nonlinearities , 2001 .

[22]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[23]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[24]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[25]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[26]  Chenfanfu Jiang,et al.  Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping , 2020, ACM Trans. Graph..

[27]  Piotr Breitkopf,et al.  Recent Advances on Topology Optimization of Multiscale Nonlinear Structures , 2017 .

[28]  Y. Kim,et al.  Element connectivity parameterization for topology optimization of geometrically nonlinear structures , 2005 .

[29]  George I. N. Rozvany,et al.  On the validity of ESO type methods in topology optimization , 2001 .

[30]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[31]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[32]  Eftychios Sifakis,et al.  Narrow-band topology optimization on a sparsely populated grid , 2018, ACM Trans. Graph..

[33]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[34]  D. Stewart Finite-dimensional contact mechanics , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[36]  Daniel A. Tortorelli,et al.  An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms , 2003 .

[37]  O. Sigmund,et al.  Sensitivity filtering from a continuum mechanics perspective , 2012 .

[38]  Denis Demidov,et al.  AMGCL: An Efficient, Flexible, and Extensible Algebraic Multigrid Implementation , 2018, Lobachevskii Journal of Mathematics.

[39]  Ole Sigmund,et al.  Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures , 2016, IEEE Transactions on Visualization and Computer Graphics.

[40]  J. Teran,et al.  Dynamic anticrack propagation in snow , 2018, Nature Communications.

[41]  Vladimir G. Kim,et al.  OptCuts: joint optimization of surface cuts and parameterization , 2019, ACM Trans. Graph..

[42]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[43]  Martin P. Bendsøe,et al.  A Displacement-Based Topology Design Method with Self-Adaptive Layered Materials , 1993 .

[44]  P. Panagiotopoulos,et al.  Nonsmooth Mechanics I , 1996 .

[45]  J. Brackbill,et al.  Flip: A low-dissipation, particle-in-cell method for fluid flow , 1988 .

[46]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[47]  Michael Yu Wang,et al.  Topology optimization of hyperelastic structures using a level set method , 2017, J. Comput. Phys..

[48]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[49]  O. Sigmund,et al.  Topology optimization using an explicit interface representation , 2014 .

[50]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[51]  Chenfanfu Jiang,et al.  Silly rubber , 2019, ACM Trans. Graph..

[52]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[53]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[54]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[55]  John A. Nairn,et al.  Three-Dimensional Dynamic Fracture Analysis Using the Material Point Method , 2006 .

[56]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[57]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[58]  Jakob S. Jensen,et al.  Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems , 2014 .

[59]  Ole Sigmund,et al.  On the (non-)optimality of Michell structures , 2016, Structural and Multidisciplinary Optimization.

[60]  Ming Gao,et al.  CD-MPM , 2019, ACM Trans. Graph..

[61]  Jian Zhang,et al.  Lagrangian Description Based Topology Optimization—A Revival of Shape Optimization , 2016 .

[62]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[63]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[64]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[65]  M. Wang,et al.  A level set‐based parameterization method for structural shape and topology optimization , 2008 .

[66]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[67]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[68]  C. Swan,et al.  VOIGT-REUSS TOPOLOGY OPTIMIZATION FOR STRUCTURES WITH NONLINEAR MATERIAL BEHAVIORS , 1997 .

[69]  Martin P. Bendsøe,et al.  Topology design of structures , 1993 .

[70]  Kenichi Soga,et al.  Material Point Method for Coupled Hydromechanical Problems , 2014 .

[71]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[72]  Ole Sigmund,et al.  Giga-voxel computational morphogenesis for structural design , 2017, Nature.

[73]  Eduardo Alonso,et al.  Progressive failure of Aznalcóllar dam using the material point method , 2011 .

[74]  Z. Kang,et al.  Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique , 2015 .

[75]  Daniel A. Tortorelli,et al.  Topology optimization of geometrically nonlinear structures and compliant mechanisms , 1998 .

[76]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[77]  J. Ball Global invertibility of Sobolev functions and the interpenetration of matter , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.