A class of spline functions for landmark‐based image registration

A class of spline functions, called Lobachevsky splines, is proposed for landmark-based image registration. Analytic expressions of Lobachevsky splines and some of their properties are given, reasoning in the context of probability theory. Because these functions have simple analytic expressions and compact support, landmark-based transformations can be advantageously defined using them. Numerical results point out accuracy and stability of Lobachevsky splines, comparing them with Gaussians and thin plate splines. Moreover, an application to a real-life case (cervical X-ray images) shows the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[2]  Roberto Cavoretto,et al.  A Local IDW Transformation Algorithm for Medical Image Registration , 2008 .

[3]  L. M. M.-T. Theory of Probability , 1929, Nature.

[4]  A. Rossi,et al.  Landmark-Based Registration Using a Local Radial Basis Function Transformation 1 , 2010 .

[5]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[6]  Roberto Cavoretto,et al.  Meshfree approximation methods, algorithms and applications , 2010 .

[7]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[8]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[9]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[10]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[11]  N. Lobatschewsky Probabilité des résultats moyens tirés d'observations répetées. , 1842 .

[12]  M. Fitzpatrick A Review of Medical Image Registration , 1993 .

[13]  Bernhard Quatember,et al.  Geometric modeling and motion analysis of the epicardial surface of the heart , 2010, Math. Comput. Simul..

[14]  Jan Modersitzky,et al.  FAIR - Flexible Algorithms for Image Registration , 2009, Fundamentals of algorithms.

[15]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[16]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[17]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[18]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[19]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[20]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Bernhard Quatember,et al.  Radial Basis Functions and Splines for Landmark-Based Registration of Medical Images , 2010 .

[22]  R. Brinks On the convergence of derivatives of B-splines to derivatives of the Gaussian function , 2008 .

[23]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[24]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[25]  Karl Rohr,et al.  A New Class of Elastic Body Splines for Nonrigid Registration of Medical Images , 2005, Journal of Mathematical Imaging and Vision.

[26]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.