Prediction of energy effective grinding conditions

Abstract Grinding processes in general are extremely energy intensive. In order to optimize the energy consumption the choice of the process parameters is important. The decision on the process parameters often depends on experiences or a certain number of experiments before starting a process. Here a model will be shown which enables the prediction of optimum process parameters for ceramic materials in wet stirred media milling. The model was built on the basis of the model of stress energy. The optimum stress intensity (optimum stress energy related to particle volume) is correlated with the compression strength, due to the assumption that pressure is dominant type of stress in stirred media mills. The term describing the strength of the particles is correlated with the material property parameters taking the grinding limit into account. The enhanced model enables the prediction of grinding media size and stirrer tip speed for certain desired particle finesses, if material parameters like Young’s moduli and density of product and grinding media as well as the compression strength are known. This model can be used for different mill types if different the stress energy distributions are taken into account.

[1]  A. Kwade,et al.  Production of transparent suspensions by real grinding of fused corundum , 2011 .

[2]  Wolfgang Peukert,et al.  Material properties in fine grinding , 2004 .

[3]  Jörg Schwedes,et al.  Mechanical production and stabilization of submicron particles in stirred media mills , 2003 .

[4]  Polonsky,et al.  Size effects of dislocation stability in nanocrystals. , 1991, Physical review. B, Condensed matter.

[5]  H. Kalman,et al.  Breakage probability of irregularly shaped particles , 2010 .

[6]  A. Kwade,et al.  Nano particle production in high-power-density mills , 2008 .

[7]  A. A. Mirghasemi,et al.  Numerical simulation of particle breakage of angular particles using combined DEM and FEM , 2011 .

[8]  Hans Rumpf,et al.  Die Einzelkornzerkleinerung als Grundlage einer technischen Zerkleinerungswissenschaft , 1965 .

[9]  Bahram Rezai,et al.  Discrete element modeling for predicting breakage behavior and fracture energy of a single particle in a jaw crusher , 2010 .

[10]  I. Celik The effects of particle size distribution and surface area upon cement strength development , 2009 .

[11]  Jörg Schwedes,et al.  Stress intensity in stirred media mills and its effect on specific energy requirement , 2001 .

[12]  W. Peukert,et al.  Nanoparticle Production with Stirred-Media Mills: Opportunities and Limits , 2010 .

[13]  Haim Kalman,et al.  Strength distribution of particles under compression , 2011 .

[14]  Jörg Schwedes,et al.  Comminution of ceramics in stirred media mills and wear of grinding beads 1 Extended version of the , 1999 .

[15]  Arno Kwade Mill selection and process optimization using a physical grinding model , 2004 .

[16]  K. Schönert,et al.  Advances in comminution fundamentals and impacts on technology , 1991 .

[17]  A. Kwade,et al.  Produktgestaltung bei der Nanozerkleinerung durch Einsatz kleinster Mahlkörper , 2009 .

[18]  Jörg Schwedes,et al.  Stress energy distribution in different stirred media mill geometries , 2004 .

[19]  Wolfgang Peukert,et al.  Breakage behaviour of different materials—construction of a mastercurve for the breakage probability , 2003 .

[20]  Wolfgang Peukert,et al.  Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation , 2009 .

[21]  Jörg Schwedes,et al.  Production of sub-micron particles by wet comminution in stirred media mills , 2004 .

[22]  Jörg Schwedes,et al.  Investigation of Motion in Stirred Media Mills , 2000 .

[23]  Wolfgang Peukert,et al.  Identifying the apparent and true grinding limit , 2009 .

[24]  P. J. Goetz,et al.  Use of ultrasound for characterizing dairy products. , 2005, Journal of dairy science.