Pairwise Feature Interactions to Predict Arrhythmic Risk of Brugada Syndrome
暂无分享,去创建一个
Konstantinos P. Letsas | Gary Tse | Qingpeng Zhang | Sharen Lee | Jiandong Zhou | Eric Schulze-Bahr | Ka Hou Christien Li | Tong Liu | Sven Zumhagen | E. Schulze-Bahr | Qingpeng Zhang | Tong Liu | G. Tse | Sharen Lee | K. Letsas | K. H. C. Li | S. Zumhagen | Jiandong Zhou
[1] H. Huikuri,et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge , 2016, Journal of arrhythmia.
[2] Akinori Awazu,et al. Risk stratification of ventricular fibrillation in Brugada syndrome using noninvasive scoring methods. , 2016, Heart rhythm.
[3] Qingpeng Zhang,et al. Automated Electrocardiogram Analysis Identifies Novel Predictors of Ventricular Arrhythmias in Brugada Syndrome , 2021, Frontiers in Cardiovascular Medicine.
[4] A. Wilde,et al. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? , 2005, Cardiovascular research.
[5] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[6] Qingpeng Zhang,et al. Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation , 2021, Open Heart.
[7] P. Brugada,et al. A score model to predict risk of events in patients with Brugada Syndrome , 2017, European heart journal.
[8] Z. Reitermanová. Data Splitting , 2010 .