The effects of prestarvation diet on starvation tolerance of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae)

Understanding the factors affecting stress tolerance in phytoseiid mites is critical for their integration into biological control programs. In the present study, the effects of diet (varying in prey species, physiological status and phenotype) are examined on the future starvation tolerance of the predatory mite Neoseiulus californicus McGregor (Acari: Phytoseiidae). The predators are fed from egg to adulthood on diapausing or nondiapausing Tetranychus urticae, Tetranychus kanzawai (wild and albino strains) or the nondiapausing species Panonychus citri (wild and albino strains). Thereafter, 3‐day‐old mated adult females are held without food at 25 ± 1 °C and a relative humidity of 98 ± 2%. The survival of these starved females is observed daily until all females have died. The survival curves and mean survival times of N. californicus are found to vary among prey types and are significantly longer when the predator is fed with diapausing prey. This enhanced survival is consistent with high concentrations of glycogen and triacylglyceride in the body of the predator at the onset of starvation. The predators fed nondiapausing prey have shorter survival times, and the glycogen and triacylglyceride contents in their bodies are low or undetectable. The protein contents of the predator's body are similar after consuming different prey types, except for a high concentration when fed the albino strain of P. citri. Protein content is unlikely to play a direct role in starvation tolerance, although it may affect the response to varying glycogen and triacylglyceride levels. These findings indicate that nutritional value of prey has a strong impact on the starvation tolerance of N. californicus.

[1]  A. Pozzebon,et al.  Does pollen availability mitigate the impact of pesticides on generalist predatory mites? , 2014, BioControl.

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  K. Ohyama,et al.  Cold storage of the predatory mite Neoseiulus californicus is improved by pre-storage feeding on the diapausing spider mite Tetranychus urticae , 2014, BioControl.

[4]  Takeshi Suzuki,et al.  Desiccation tolerance in diapausing spider mites Tetranychus urticae and T. kanzawai (Acari: Tetranychidae) , 2013, Experimental and Applied Acarology.

[5]  Guiting Li,et al.  Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae) , 2013 .

[6]  M. Takeda,et al.  Roles of fat body trophocytes, mycetocytes and urocytes in the American cockroach, Periplaneta americana under starvation conditions: an ultrastructural study. , 2013, Arthropod structure & development.

[7]  D. Renault,et al.  Deciphering the Metabolic Changes Associated with Diapause Syndrome and Cold Acclimation in the Two-Spotted Spider Mite Tetranychus urticae , 2013, PloS one.

[8]  D. Renault,et al.  Starvation resistance and effects of diet on energy reserves in a predatory ground beetle (Merizodus soledadinus; Carabidae) invading the Kerguelen Islands. , 2012, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[9]  Y. Lemaho,et al.  A History of Modern Research into Fasting, Starvation, and Inanition , 2012 .

[10]  O. Yamashita,et al.  Trehalase-2 protein contributes to trehalase activity enhanced by diapause hormone in developing ovaries of the silkworm, Bombyx mori. , 2011, Journal of insect physiology.

[11]  S. Simpson,et al.  Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. , 2010, Journal of insect physiology.

[12]  V. Loeschcke,et al.  Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. , 2010, Journal of insect physiology.

[13]  E. L. Arrese,et al.  Insect fat body: energy, metabolism, and regulation. , 2010, Annual review of entomology.

[14]  G. J. Moraes,et al.  Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae) , 2010, Experimental and Applied Acarology.

[15]  L. Matzkin,et al.  Metabolic pools differ among ecologically diverse Drosophila species. , 2009, Journal of insect physiology.

[16]  Masakatsu Watanabe,et al.  UV tolerance in the two-spotted spider mite, Tetranychus urticae. , 2009, Journal of insect physiology.

[17]  Guoli Zhou,et al.  Energy metabolism during diapause in Culex pipiens mosquitoes. , 2009, Journal of insect physiology.

[18]  G. Talarico,et al.  Effects of starvation on reproduction of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) , 2009, Experimental and Applied Acarology.

[19]  Richard G Melvin,et al.  Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations. , 2008, Journal of insect physiology.

[20]  R. Stoks,et al.  Compensatory growth and oxidative stress in a damselfly , 2008, Proceedings of the Royal Society B: Biological Sciences.

[21]  D. Denlinger,et al.  Meeting the energetic demands of insect diapause: nutrient storage and utilization. , 2007, Journal of insect physiology.

[22]  T. Gotoh,et al.  Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae) , 2007, Experimental & Applied Acarology.

[23]  Tsutomu Saito,et al.  Density suppression of the citrus red mite Panonychus citri (Acari: Tetranychidae) due to the occurrence of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on Satsuma mandarin , 2006 .

[24]  L. Blommers,et al.  Studies on the response ofAmblyseius bibens [Acarina: Phytoseiidae] to conditions of prey scarcity , 1977, Entomophaga.

[25]  Jung Duck-Oung,et al.  Identification of Low Molecular Weight Diapause‐Associated Proteins of Two‐Spotted Spider Mite, Tetranychus urticae , 2005 .

[26]  A. Veerman Diapause in phytoseiid mites: a review , 1992, Experimental & Applied Acarology.

[27]  W. Overmeer,et al.  Cold-hardiness in the predatory miteAmblyseius potentillae (Acari: Phytoseiidae) , 1991, Experimental & Applied Acarology.

[28]  M. Sabelis,et al.  Do phytoseiid mites select the best prey species in terms of reproductive success? , 1990, Experimental & Applied Acarology.

[29]  Masahiko Watanabe,et al.  Cold Hardiness of Neoseiulus californicus and N. womersleyi (Acari: Phytoseiidae) , 2005 .

[30]  D. Denlinger,et al.  Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host Sarcophaga crassipalpis. , 2000, Journal of insect physiology.

[31]  M. Rose,et al.  Metabolic Reserves and Evolved Stress Resistance in Drosophila melanogaster , 1998, Physiological Zoology.

[32]  V. Košťál,et al.  Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause. , 1998, Journal of insect physiology.

[33]  M. Rose,et al.  Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. , 1997, The Journal of experimental biology.

[34]  T. Gotoh Annual Life Cycles of Populations of the Two-Spotted Spider Mite, Tetranychus urticae KOCH (Acari: Tetranychidae) in Four Japanese Pear Orchards , 1997 .

[35]  K. Crailsheim,et al.  Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.). , 1997, Journal of insect physiology.

[36]  K. Storey,et al.  Biochemistry of Cryoprotectants , 1991 .

[37]  P. Gambaro Diapause in Amblyseius andersoni Chant (=A. potentillae Garman) (Acarina Phytoseiidae) in the climate of the Po Valley. , 1990 .

[38]  I. Shimizu,et al.  Changes of triglyceride and glycogen content in the silkworm (Bombyx mori) eggs during diapause and embryogenesis , 1987 .

[39]  J. E. Steele Glycogen phosphorylase in insects , 1982 .

[40]  D. Penman,et al.  Integrated control of apple pests in New Zealand. 17. Relationships of Amblyseius fallacis to phytophagous mites in an apple orchard. , 1980 .

[41]  B. Croft,et al.  ASPECTS OF THE FUNCTIONAL, OVIPOSITIONAL AND STARVATION RESPONSE OF AMBLYSEIUS FALLACIS TO PREY DENSITY , 1979 .

[42]  C. Wearing Integrated control of apple pests in New Zealand , 1975 .

[43]  A. Veerman Carotenoid metabolism in Tetranychus urticae koch (Acari: Tetranychidae). , 1974, Comparative biochemistry and physiology. B, Comparative biochemistry.

[44]  C. B. Knisley,et al.  Biological studies of Amblyseius umbraticus (Acariña : Phytoseiidae). , 1971 .

[45]  J. Mcmurtry,et al.  An ecological study of the spider mite Oligonychus punicae (Hirst) and its natural enemies , 1966 .

[46]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.