Ab-initio simulation of (a/2)⟨110] screw dislocations in γ-TiAl

The equilibrium core structure of an isolated (a/2)⟨110]{111} screw dislocation is calculated using a first-principles pseudopotential plane-wave method within the local-density approximation of the density functional theory. In this work the local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible-boundary condition method. This ab-initio adaptation of the Green's function boundary condition method makes it possible to simulate the dislocation in a very small periodic cell without compromising the fidelity of the final core configuration. Supercells of 210, 288 and 420 atoms are used to evaluate the local screw and edge displacements of a straight (a/2)⟨110]{111} screw dislocation in γ-TiAl. The predicted dislocation core is nonplanar with significant portions of the dislocation core spread on conjugate {111} glide planes. The nonplanar character of the dislocation core suggests that the dislocation is sessile and would readily glide on either of two {111} slip planes. The dislocation core also produces small but significant edge components that are expected to interact strongly with non-glide (e.g. Escaig) stresses, producing significant non-Schmid behaviour. Preliminary estimates of the lattice frictional stress for a pure (111) shear stress are in the range of 0.01 µ, where µ is the shear modulus.

[1]  S. Whang,et al.  Stability of ordinary dislocations on cross-slip planes in γ-TiAl , 2002 .

[2]  V. Vítek,et al.  Atomistic study of non-Schmid effects in the plastic yielding of bcc metals , 2001 .

[3]  Per Söderlind,et al.  Accurate atomistic simulation of (a/2) ⟨111⟩ screw dislocations and other defects in bcc tantalum , 2001 .

[4]  C. Woodward,et al.  Atomistic simulations of (a/2)⟨111⟩ screw dislocations in bcc Mo using a modified generalized pseudopotential theory potential , 2001 .

[5]  S. Whang,et al.  Cross-slip and glide behavior of ordinary dislocations in single crystal γ-Ti–56Al , 1999 .

[6]  C. Woodward,et al.  SITE PREFERENCES AND FORMATION ENERGIES OF SUBSTITUTIONAL SI, NB, MO, TA, AND W SOLID SOLUTIONS IN L10 TI-AL , 1998 .

[7]  V. Vítek,et al.  Plastic anisotropy in b.c.c. transition metals , 1998 .

[8]  M. Fähnle,et al.  Generalized stacking-fault energies for TiAl: Mechanical instability of the (111) antiphase boundary , 1998 .

[9]  S. Znám,et al.  Structure of interfaces in the lamellar TiAl : effects of directional bonding and segregation , 1997 .

[10]  S. Whang,et al.  Deformation under single slip of ordinary dislocations in single crystal Ti–56Al , 1997 .

[11]  D. Dimiduk,et al.  The geometry and nature of pinning points of ½ 〈110] unit dislocations in binary TiAl alloys , 1997 .

[12]  D. Dimiduk,et al.  Atomistics simulations of structures and properties of ½⟨110⟩ dislocations using three different embedded-atom method potentials fit to γ-TiAl , 1997 .

[13]  H. Inui,et al.  Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti−56 at.% Al) , 1997 .

[14]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[15]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[16]  D. Schwartz,et al.  High-temperature ordered intermetallic alloys VI: Part 2. Materials Research Society symposium proceedings Volume 364 , 1995 .

[17]  B. Viguier,et al.  Modelling the flow stress anomaly in γ-TiAl II. The local pinning-unzipping model: Statistical analysis and consequences , 1995 .

[18]  S. Whang,et al.  Elastic constants of single crystal γ – TiAl , 1995 .

[19]  D. Dimiduk,et al.  Dislocation structures and deformation behaviour of Ti-50/52Al alloys between 77 and 1173 K , 1995 .

[20]  C. Woodward,et al.  Electronic structure of planar faults in TiAl , 1992 .

[21]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[22]  Annick Loiseau,et al.  Weak-beam observation of a dissociation transition in TiAl , 1988 .

[23]  T. Kawabata,et al.  Positive temperature dependence of the yield stress in TiAl L10 type superlattice intermetallic compound single crystals at 293–1273 K , 1985 .

[24]  Roger Taylor,et al.  Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice , 1971 .

[25]  M. Duesbery,et al.  An effective ion–ion potential for sodium , 1970 .

[26]  D. K. Bowen,et al.  The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .

[27]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[28]  J. Simmons,et al.  Green's function boundary conditions in two-dimensional and three-dimensional atomistic simulations of dislocations , 1998 .

[29]  M. Yoo,et al.  Physical constants, deformation twinning, and microcracking of titanium aluminides , 1998 .

[30]  D. Dimiduk,et al.  Solute-Dislocation Interactions and Solid-Solution Strengthening Mechanisms in Ordered Alloys , 1992 .

[31]  G. Taylor Thermally-activated deformation of BCC metals and alloys , 1992 .

[32]  G. M. Stocks,et al.  Alloy phase stability and design , 1991 .

[33]  G. Ackland,et al.  HIGH-TEMPERATURE ORDERED INTERMETALLIC ALLOYS III , 1989 .

[34]  V. Anisimov,et al.  Possible factors affecting the brittleness of the intermetallic compound TiAl. II. Peierls manyvalley relief , 1988 .

[35]  David Bacon,et al.  Anisotropic continuum theory of lattice defects , 1980 .