Automated theorem provers: a practical tool for the working mathematician?

In contrast to the widespread use of computer algebra systems in mathematics automated theorem provers have largely met with indifference. There are signs that this is at last beginning to change. We argue that it is inevitable that automated provers will be adopted as a practical tool for the working mathematician. Mathematical applications of automated provers raises profound challenges for their developers.

[1]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[2]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[5]  Richard J. Lipton,et al.  Social processes and proofs of theorems and programs , 1977, POPL.

[6]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[7]  D. Gorenstein Finite Simple Groups: An Introduction to Their Classification , 1982 .

[8]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[9]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[10]  Piotr Rudnicki,et al.  An Overview of the MIZAR Project , 1992 .

[11]  Lawrence C. Paulson,et al.  Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.

[12]  Robert S. Boyer,et al.  The QED Manifesto , 1994, CADE.

[13]  Alan Bundy Automated deduction, CADE-12 : 12th International Conference on Automated Deduction, Nancy, France, June 26-July 1, 1994 : proceedings , 1994 .

[14]  Jacques D. Fleuriot,et al.  Proving Newton's Propositio Kepleriana Using Geometry and Nonstandard Analysis in Isabelle , 1998, Automated Deduction in Geometry.

[15]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[16]  Ursula Martin,et al.  Computers, Reasoning and Mathematical Practice , 1999 .

[17]  Donald MacKenzie,et al.  Mechanizing Proof: Computing, Risk, and Trust , 2001 .

[18]  Aaron Kans,et al.  Formal Software Development , 2004 .

[19]  Alan Bundy,et al.  Rippling - meta-level guidance for mathematical reasoning , 2005, Cambridge tracts in theoretical computer science.

[20]  T. Hales The Kepler conjecture , 1998, math/9811078.

[21]  Alan Bundy,et al.  Ascertaining Mathematical Theorems , 2005, Calculemus.

[22]  Dieter Hutter,et al.  Formal Software Development in MAYA , 2005, Mechanizing Mathematical Reasoning.

[23]  Ewen Denney,et al.  Hiproofs: A Hierarchical Notion of Proof Tree , 2006, MFPS.

[24]  Alan Bundy,et al.  The Nature of Mathematical Proof , 2005 .

[25]  Michael Aschbacher,et al.  Highly complex proofs and implications of such proofs , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Dieter Hutter,et al.  Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday , 2005, Mechanizing Mathematical Reasoning.

[27]  A. Macintyre,et al.  Abstracts of additional presentations made at the Royal Society Discussion Meeting ‘The nature of mathematical proof’ , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Makarius Wenzel Isabelle/Isar — a Generic Framework for Human-Readable Proof Documents , 2007 .

[29]  Roman. Matuszewski,et al.  From insight to proof : Festschrift in honour of Andrzej Trybulec , 2007 .

[30]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[31]  T. Hales Formal Proof , 2008 .

[32]  W. T. Gowers,et al.  Rough Structure and Classification , 2010 .

[33]  Bogdan Grechuk,et al.  Isabelle Primer for Mathematicians , 2010 .